TAN Minying, DAI Chuanjing, LU Xuemin, et al. Proliferation and Anti-inflammatory Effects of Tremella fuciformis Polysaccharide on Human Chondrocytes[J]. Science and Technology of Food Industry, 2024, 45(1): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060077.
Citation: TAN Minying, DAI Chuanjing, LU Xuemin, et al. Proliferation and Anti-inflammatory Effects of Tremella fuciformis Polysaccharide on Human Chondrocytes[J]. Science and Technology of Food Industry, 2024, 45(1): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023060077.

Proliferation and Anti-inflammatory Effects of Tremella fuciformis Polysaccharide on Human Chondrocytes

More Information
  • Received Date: June 08, 2023
  • Available Online: November 03, 2023
  • Objective: Osteoarthritis (OA) is a prevalent chronic joint disease. The purpose of this study was to investigate the proliferative and anti-inflammatory effects of Tremella fuciformis polysaccharide on osteoarthritis cell model human chondrocyte T/C-28a2. Methods: Proliferative effect and cytotoxicity of T/C-28a2 cells treated by Tremella fuciformis polysaccharide were detected with MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide) and crystal violet staining experiment. The bone inflammation model was established by lipopolysaccharide (LPS) treatment in T/C-28a2 cells. The expression of interleukin-6 (IL-6) in cells after drug treatment was detected by enzyme-linked immunosorbent assay (ELISA) analysis. The expression of osteoprotegerin (OPG) and inflammatory factors after drug treatment was detected by Western blot analysis. In addition, reactive oxygen species (ROS) release assay was used to detect the level of oxidative stress and anti-inflammation response to cells. Results: Tremella fuciformis polysaccharide could promote proliferation of human chondrocyte T/C-28a2 without obvious cytotoxicity. After LPS was used to treat human chondrocytes to simulate the environment of bone inflammation, it was found that the treatment of Tremella fuciformis polysaccharide and chondroitin sulfate could reduce the secretion of IL-6 and inhibit the occurrence of inflammation. Further Western blot analysis showed that after treatment of Tremella fuciformis polysaccharide, expression of related osteoprotegerin (OPG) was upregulated, expression of proapoptosis-related protein Bax, extracellular signal-regulated kinase ERK-MAPK and nuclear factor κB (NF-κB) was down-regulated. ROS release experiment showed that Tremella fuciformis polysaccharide and chondroitin sulfate could inhibit intracellular ROS levels and the occurrence of inflammatory response. Conclusion: Tremella fuciformis polysaccharide exhibited the effect of inhibiting osteoarthritis, protecting cartilage tissue and resisting cell apoptosis to a certain extent. In this study, the anti-inflammatory effect of Tremella fuciformis polysaccharide and its mechanism were primarily explored, which provided the preliminary experimental basis for the development of Tremella fuciformis polysaccharide as an anti-inflammatory drug.
  • loading
  • [1]
    SANCHEZ-LOPEZ E, CORAS R, TORRES A, et al. Synovial inflammation in osteoarthritis progression[J]. Nature Reviews Rheumatology,2022,18(5):258−275. doi: 10.1038/s41584-022-00749-9
    [2]
    KRAUS V B, BLANCO F J, ENGLUND M, et al. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use[J]. Osteoarthritis Cartilage,2015,23(8):1233−41. doi: 10.1016/j.joca.2015.03.036
    [3]
    SOHN D H, SOKOLOVE J, SHARPE O, et al. Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4[J]. Arthritis Research & Therapy,2012,14(1):R7. doi: 10.1186/ar3555
    [4]
    YAO Q, WU X, TAO C, et al. Osteoarthritis:Pathogenic signaling pathways and therapeutic targets[J]. Signal Transduction and Targeted Therapy,2023,8(1):56. doi: 10.1038/s41392-023-01330-w
    [5]
    KATZ J N, ARANT K R, LOESER R F. Diagnosis and treatment of hip and knee osteoarthritis:A review[J]. Jama,2021,325(6):568−578. doi: 10.1001/jama.2020.22171
    [6]
    UEBELHART D, THONAR E J, ZHANG J, et al. Protective effect of exogenous chondroitin 4, 6-sulfate in the acute degradation of articular cartilage in the rabbit [J]. Osteoarthritis Cartilage, 1998, 6 Suppl A:6-13.
    [7]
    Global Burden of Disease Study 2013 Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 301 acute and chronic diseases and injuries in 188 countries, 1990-2013:A systematic analysis for the Global Burden of Disease Study 2013[J]. Lancet,2015,386(9995):743−800. doi: 10.1016/S0140-6736(15)60692-4
    [8]
    LOSINA E, WEINSTEIN A M, REICHMANN W M, et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US[J]. Arthritis Care Res (Hoboken),2013,65(5):703−711. doi: 10.1002/acr.21898
    [9]
    BROWN T D, JOHNSTON R C, SALTZMAN C L, et al. Posttraumatic osteoarthritis:A first estimate of incidence, prevalence, and burden of disease[J]. Journal of Orthop Trauma,2006,20(10):739−744. doi: 10.1097/01.bot.0000246468.80635.ef
    [10]
    VAN DEN BOSCH M H J. Osteoarthritis year in review 2020:Biology[J]. Osteoarthritis Cartilage,2021,29(2):143−50. doi: 10.1016/j.joca.2020.10.006
    [11]
    ARDEN N K, PERRY T A, BANNURU R R, et al. Non-surgical management of knee osteoarthritis:Comparison of ESCEO and OARSI 2019 guidelines[J]. Nature Reviews Rheumatology,2021,17(1):59−66. doi: 10.1038/s41584-020-00523-9
    [12]
    HENROTIN Y, MARTY M, MOBASHERI A. What is the current status of chondroitin sulfate and glucosamine for the treatment of knee osteoarthritis?[J]. Maturitas,2014,78(3):184−187. doi: 10.1016/j.maturitas.2014.04.015
    [13]
    WU D, HUANG Y, GU Y, et al. Efficacies of different preparations of glucosamine for the treatment of osteoarthritis:A meta-analysis of randomised, double-blind, placebo-controlled trials[J]. International Journal of Clinical Practice,2013,67(6):585−594. doi: 10.1111/ijcp.12115
    [14]
    CLEGG D O, REDA D J, HARRIS C L, et al. Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis[J]. New England Journal of Medicine,2006,354(8):795−808. doi: 10.1056/NEJMoa052771
    [15]
    DA COSTA B R, PEREIRA T V, SAADAT P, et al. Effectiveness and safety of non-steroidal anti-inflammatory drugs and opioid treatment for knee and hip osteoarthritis:Network meta-analysis[J]. Bmj,2021,375:n2321.
    [16]
    BANNURU R R, OSANI M C, VAYSBROT E E, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis[J]. Osteoarthritis Cartilage,2019,27(11):1578−1589. doi: 10.1016/j.joca.2019.06.011
    [17]
    LANZA F L, CHAN F K, QUIGLEY E M. Guidelines for prevention of NSAID-related ulcer complications[J]. Am J Gastroenterol,2009,104(3):728−38.
    [18]
    PENDLETON A, ARDEN N, DOUGADOS M, et al. EULAR recommendations for the management of knee osteoarthritis:Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT)[J]. Annals of the Rheumatic Diseases,2000,59(12):936−944. doi: 10.1136/ard.59.12.936
    [19]
    ZHANG S, TEO K Y W, CHUAH S J, et al. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis[J]. Biomaterials,2019,200:35−47. doi: 10.1016/j.biomaterials.2019.02.006
    [20]
    YANG D, LIU Y, ZHANG L. Tremella polysaccharide:The molecular mechanisms of its drug action[J]. Progress In Molecular Biology and Translational Science,2019,163:383−421.
    [21]
    ZHANG Y, ZHANG M, JIANG Y, et al. Lentinan as an immunotherapeutic for treating lung cancer:A review of 12 years clinical studies in China[J]. Journal of Cancer Research and Clinical Oncology,2018,144(11):2177−2186. doi: 10.1007/s00432-018-2718-1
    [22]
    LEE J, HA S J, LEE H J, et al. Protective effect of Tremella fuciformis Berk extract on LPS-induced acute inflammation via inhibition of the NF-κB and MAPK pathways[J]. Food Funct,2016,7(7):3263−3272. doi: 10.1039/C6FO00540C
    [23]
    XU Y, XIE L, ZHANG Z, et al. Tremella fuciformis polysaccharides inhibited colonic inflammation in dextran sulfate sodium-treated mice via Foxp3+T cells, gut microbiota, and bacterial metabolites[J]. Front Immunol,2021,12:648162. doi: 10.3389/fimmu.2021.648162
    [24]
    SHEN T, DUAN C, CHEN B, et al. Tremella fuciformis polysaccharide suppresses hydrogen peroxide-triggered injury of human skin fibroblasts via upregulation of SIRT1[J]. Molecular Medicine Reports,2017,16(2):1340−1346. doi: 10.3892/mmr.2017.6754
    [25]
    MA L, LIN Z B. Effect of tremella polysaccharide on IL-2 production by mouse splenocytes[J]. Yao Xue Xue Bao,1992,27(1):1−4.
    [26]
    BRUYÈRE O, ALTMAN R D, REGINSTER J Y. Efficacy and safety of glucosamine sulfate in the management of osteoarthritis:Evidence from real-life setting trials and surveys [J]. Seminars in Arthritis and Rheumatism, 2016, 45(4 Suppl):S12−7.
    [27]
    REGINSTER J Y, VERONESE N. Highly purified chondroitin sulfate:A literature review on clinical efficacy and pharmacoeconomic aspects in osteoarthritis treatment[J]. Aging Clinical and Experimental Research,2021,33(1):37−47. doi: 10.1007/s40520-020-01643-8
    [28]
    KUANG S, LIU L, HU Z, et al. A review focusing on the benefits of plant-derived polysaccharides for osteoarthritis[J]. International Journal of Biological Macromolecules,2023,228:582−593. doi: 10.1016/j.ijbiomac.2022.12.153
    [29]
    AL-AZAB M, QAED E, OUYANG X, et al. TL1A/TNFR2-mediated mitochondrial dysfunction of fibroblast-like synoviocytes increases inflammatory response in patients with rheumatoid arthritis via reactive oxygen species generation[J]. Febs Journal,2020,287(14):3088−3104. doi: 10.1111/febs.15181
    [30]
    KOURTIS A, ADAMOPOULOS P G, PAPALOIS A, et al. Quantitative analysis and study of the mRNA expression levels of apoptotic genes BCL2, BAX and BCL2L12 in the articular cartilage of an animal model of osteoarthritis[J]. Annals of Translational Medicine ,2018,6(12):243. doi: 10.21037/atm.2018.05.47
    [31]
    CHARLIER E, DEROYER C, CIREGIA F, et al. Chondrocyte dedifferentiation and osteoarthritis (OA)[J]. Biochemical Pharmacology,2019,165:49−65. doi: 10.1016/j.bcp.2019.02.036
    [32]
    KAPOOR M, MARTEL-PELLETIER J, LAJEUNESSE D, et al. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis[J]. Nature Reviews Rheumatology,2011,7(1):33−42. doi: 10.1038/nrrheum.2010.196
    [33]
    DENG C, ZHOU Q, ZHANG M, et al. Bioceramic scaffolds with antioxidative functions for ROS scavenging and osteochondral regeneration[J]. Advanced Science(Weinh),2022,9(12):e2105727. doi: 10.1002/advs.202105727
    [34]
    CHEN G, ZHAO H, MA S, et al. Circadian rhythm protein Bmal1 modulates cartilage gene expression in temporomandibular joint osteoarthritis via the MAPK/ERK pathway[J]. Front Pharmacol,2020,11:527744. doi: 10.3389/fphar.2020.527744
    [35]
    LEPETSOS P, PAPAVASSILIOU K A, PAPAVASSILIOU A G. Redox and NF-κB signaling in osteoarthritis[J]. Free Radical Biology and Medicine,2019,132:90−100. doi: 10.1016/j.freeradbiomed.2018.09.025
    [36]
    MOBASHERI A, BATT M. An update on the pathophysiology of osteoarthritis[J]. Annals of Physical and Rehabilitation Medicine,2016,59(5-6):333−339. doi: 10.1016/j.rehab.2016.07.004
    [37]
    BUHRMANN C, BROCKMUELLER A, MUELLER A L, et al. Curcumin attenuates environment-derived osteoarthritis by Sox9/NF-κB signaling axis[J]. International Journal of Molecular Sciences,2021,22(14):7645. doi: 10.3390/ijms22147645
    [38]
    BURR D B, GALLANT M A. Bone remodelling in osteoarthritis[J]. Nature Reviews Rheumatology,2012,8(11):665−673. doi: 10.1038/nrrheum.2012.130
    [39]
    MEHANA E E, KHAFAGA A F, EL-BLEHI S S. The role of matrix metalloproteinases in osteoarthritis pathogenesis:An updated review[J]. Life Sciences,2019,234:116786. doi: 10.1016/j.lfs.2019.116786
    [40]
    LATOURTE A, CHERIFI C, MAILLET J, et al. Systemic inhibition of IL-6/Stat3 signalling protects against experimental osteoarthritis[J]. Annals of the Rheumatic Diseases,2017,76(4):748−755. doi: 10.1136/annrheumdis-2016-209757
    [41]
    VLACHOGIANNI T, FIOTAKIS K, LORIDAS S, et al. Potential toxicity and safety evaluation of nanomaterials for the respiratory system and lung cancer[J]. Lung Cancer (Auckl),2013,4:71−82.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (328) PDF downloads (60) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return