File failed to load: https://mathjax.xml-journal.net/platformTools/js/MathJax-master/config/TeX-AMS-MML_SVG.js
QI Jiayi, ZENG Ranhua, CHEN Zhongzheng, et al. Structural Characterization and Immunomodulatory Activities of Polysaccharides from Suillus granulatus[J]. Science and Technology of Food Industry, 2021, 42(24): 94−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040309.
Citation: QI Jiayi, ZENG Ranhua, CHEN Zhongzheng, et al. Structural Characterization and Immunomodulatory Activities of Polysaccharides from Suillus granulatus[J]. Science and Technology of Food Industry, 2021, 42(24): 94−103. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021040309.

Structural Characterization and Immunomodulatory Activities of Polysaccharides from Suillus granulatus

More Information
  • Received Date: April 28, 2021
  • Available Online: October 17, 2021
  • The present study was aimed to investigate the structural characteristics and immunomodulatory activity of Suillus granulatus polysaccharides. Two polysaccharide fractions(SGP3-1 and SGP3-2) were purified from the fruiting bodies of Suillus granulatus by water extraction and alcohol precipitation, deproteinization, and column chromatography separation. The physicochemical properties of SGP3-1 and SGP3-2 were characterized by high-performance gel permeation chromatography(HPGPC), high-performance liquid chromatography(HPLC), Fourier transform infrared spectroscopy(FT-IR), nuclear magnetic resonance spectroscopy(NMR), X-ray diffraction(XRD), etc. The results showed that the weight-average molecular weight of SGP3-1 and SGP3-2 were 170.48 and 14.52 kDa, respectively. Both SGP3-1 and SGP3-2 were low-crystallinity amorphous polymers, and had no triple-helix conformation. Additionally, SGP3-1 characterized by α-type glycosidic linkage was mainly composed glucose(55.47%), mannose(20.63%) and galactose(14.04%), while SGP3-2 characterized by β-type glycosidic linkage was mainly composed of glucose(82.43%). The results from RAW264.7 cells in vitro suggested that SGP3-1 and SGP3-2 showed no cytotoxicity in the concentration range from 5 to 40 μg/mL. Moreover, SGP3-1 and SGP3-2 could significantly enhance the phagocytic activity and promote the production of nitric oxide(NO), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α) through activating mitogen-activated protein kinases(MAPKs), phosphatidylinositol-3-kinase(PI3K)/Akt, and nuclear factor-κB(NF-κB) signaling pathways. Furthermore, SGP3-2 exhibited better immunomodulatory activity than SGP3-1. It showed that SGP3-1 and SGP3-2 could be used to develop functional foods, as dietary supplements for people with low immunity, and provide a theoretical basis and research basis for the further development of Suillus granulatus.
  • loading
  • [1]
    LIU Y, ZHANG L, ZHU X, et al. Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway[J]. Immunology,2015,146(3):379−391. doi: 10.1111/imm.12508
    [2]
    GORDON S. Pattern recognition receptors: Doubling up for the innate immune response[J]. Cell,2003,111(7):927−930.
    [3]
    熊川, 罗强, 金鑫, 等. 人工栽培灵芝中多糖的部分理化性质及免疫调节作用[J]. 微生物学通报,2018,45(4):825−835. [XIONG C, LUO Q, JIN X, et al. Physiochemical properties immunoregulatory effects of the polysaccharides from Ganodema lingzhi[J]. Microbiology,2018,45(4):825−835.
    [4]
    余钰骢, 姚菊明, 应铁进. 灵芝结构多糖水解物促进细胞免疫的功能研究[J]. 中国食品学报,2019,19(6):46−53. [YU Y C, YAO J M, YING T J, et al. Immune bioactivities of structural polysaccharides hydrolysate from Ganoderma lucidum[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(6):46−53.
    [5]
    刘苏, 姜玥, 罗建平, 等. 5种食用菌多糖理化性质及免疫活性的比较研究[J]. 食品科学,2015,36(13):252−256. [LIU S, JIANG Y, LUO J P, et al. Physicochemical properties and immunomodulating activities of polysaccharides from five species of edible mushrooms[J]. Food Science,2015,36(13):252−256. doi: 10.7506/spkx1002-6630-201513047
    [6]
    徐雪峰, 李桂娟, 闫浩, 等. 赤灵芝多糖分离纯化及体外抗氧化性研究[J]. 食品与机械,2015,36(13):252−256. [XU X F, LI G J, YAN H, et al. Study on isolation and antioxidant activity of the polysaccharide from Ganoderma lucidum[J]. Food & Machinery,2015,36(13):252−256.
    [7]
    毕君, 许云龙, 马增旺, 等. 点柄粘盖牛肝菌生态学初步研究[J]. 食用菌学报,1999(3):27−31. [BI J, XU Y L, MA Z W, et al. A preliminary study on the ecology of Suillus granulatus[J]. Atca Edulis Fungi,1999(3):27−31.
    [8]
    袁明生, 孙佩琼. 四川覃菌[M]. 成都: 四川科学技术出版社, 1995: 239−311.

    YUAN M S, SUN P Q. Sichuan mushroom[M]. Chengdu: Sichuan Publishing House of Science & Technology, 1995: 239−311.
    [9]
    王洁. 绒白乳菇和点柄乳牛肝菌中体外抗肿瘤活性成分的筛选及其作用机制研究[D]. 河北: 河北大学, 2010.

    WANG J. The study on anti-cancer activity of chemical constituents from Lactarius vellereus and Suillus granulatus and its mechanisms[D]. Hebei: Hebei University, 2010.
    [10]
    RIBEIRO B, LOPES R, ANDRADE P B, et al. Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes[J]. Food Chemistry,2008,110(1):47−56. doi: 10.1016/j.foodchem.2008.01.054
    [11]
    董泽军, 王飞, 王睿睿, 等. 点柄乳牛肝菌子实体中抗HIV-1活性成分[J]. 中草药,2007(3):337−339. [DONG Z J, WANG F, WANG R R, et al. Chemical constituents of fruiting bodies from basidiomycete Suillus granulatus and their anti-HIV-1 activity[J]. Chinese Traditional and Herbal Drugs,2007(3):337−339. doi: 10.3321/j.issn:0253-2670.2007.03.006
    [12]
    TRINGALI C, GERACI C, NICOLOSI G, et al. An antitumor principle from Suillus granulatus[J]. Journal of Natural Products,1989,52(4):844. doi: 10.1021/np50064a030
    [13]
    YANG W W, WANG L M, GONG L L, et al. Structural characterization and antioxidant activities of a novel polysaccharide fraction from the fruiting bodies of Craterellus cornucopioides[J]. International Journal of Biological Macromolecules,2018,117:473−482. doi: 10.1016/j.ijbiomac.2018.05.212
    [14]
    DUBOIS M, GILLES K A, HAMLITON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [15]
    BRADFORD M M. Rapid and sensitive method for quantitation of microgramquantities of protein utilizing principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1−2): 248−254.
    [16]
    LIAO W Z, LUO Z, LIU D, et al. Structure characterization of a novel polysaccharide from Dictyophora indusiata and its macrophage immunomodulatory activities[J]. Journal of Agricultural and Food Chemistry,2015,63(2):535−544. doi: 10.1021/jf504677r
    [17]
    NIU Y G, SHANG P P, CHEN L, et al. Characterization of a novel alkali-soluble heteropolysaccharide from tetraploid Gynostemma pentaphyllum Makino and its potential anti-inflammatory and antioxidant properties[J]. Journal of Agricultural & Food Chemistry,2014,62(17):3783−3790.
    [18]
    SCHOKKER E P, CHURCH J S, MATA J P, et al. Reconstitution properties of micellar casein powder: Effects of composition and storage[J]. International Dairy Journal,2011,21(11):877−886. doi: 10.1016/j.idairyj.2011.05.004
    [19]
    HU Z Y, ZHOU H L, LI Y P, et al. Optimized purification process of polysaccharides from Carex meyeriana Kunth by macroporous resin, its characterization and immunomodulatory activity[J]. International Journal of Biological Macromolecules,2019,132:76−86. doi: 10.1016/j.ijbiomac.2019.03.207
    [20]
    ZHANG M, WANG G, LAI F, et al. Structural characterization and immunomodulatory activity of a novel polysaccharide from Lepidium meyenii[J]. Journal of Agricultural and Food Chemistry,2016,64(9):1921−1931. doi: 10.1021/acs.jafc.5b05610
    [21]
    徐雅琴, 杨海红, 李大龙, 等. 黑加仑果实降解多糖理化特性、结构及体外降血糖活性[J/OL]. 食品科学: 1−11 [2021-04-14]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201120.1501.071.html.

    XU Y Q, YANG H H, LI D L, et al. The physicochemical properties, structural characterization and hypoglycemic activity in vitro of degraded polysaccharides from blackcurrant[J/OL]. Food Science: 1−11 [2021-04-14]. http://kns.cnki.net/kcms/detail/11.2206.ts.20201120.1501.071.html.
    [22]
    LUO Q, SUN Q, WU L, et al. Structural characterization of an immunoregulatory polysaccharide from the fruiting bodies of Lepista sordida[J]. Carbohydrate Polymers,2012,88(3):820−824. doi: 10.1016/j.carbpol.2011.12.043
    [23]
    ZHOU Y, MA W, WANG L, et al. Characterization and antioxidant activity of the oligo-maltose fraction from Polygonum cillinerve[J]. Carbohydrate Polymers,2019,226:115307. doi: 10.1016/j.carbpol.2019.115307
    [24]
    WU F F, ZHOU C H, ZHOU D D, et al. Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities[J]. Food & Function,2018,9:294−306.
    [25]
    WU L, SUN H, HAO Y, et al. Chemical structure and inhibition on α-glucosidase of the polysaccharides from Cordyceps militaris with different developmental stages[J]. International Journal of Biological Macromolecules,2020,148:722−736. doi: 10.1016/j.ijbiomac.2020.01.178
    [26]
    WANG L, ZHANG B, XIAO J, et al. Physicochemical, functional, and biological properties of water-soluble polysaccharides from Rosa roxburghii Tratt fruit[J]. Food Chemistry,2018,249:127−135. doi: 10.1016/j.foodchem.2018.01.011
    [27]
    QIAN J, CHNE W, ZHANG W, et al. Adulteration identification of some fungal polysaccharides with SEM, XRD, IR and optical rotation: A primary approach[J]. Carbohydrate Polymers,2009,78(3):620−625. doi: 10.1016/j.carbpol.2009.05.025
    [28]
    商佳琦, 邹丹阳, 滕翔宇, 等. 5种食用菌多糖的结构特征及抗氧化活性对比[J]. 食品工业科技,2020,41(15):77−89. [SHANG J Q, ZHOU D Y, TENG X Y, et al. Structural characterization and antioxidant activity of five kinds of edible fungus polysaccharides[J]. Science and Technology of Food Industry,2020,41(15):77−89.
    [29]
    何坤明, 王国锭, 白新鹏, 等. 山茱萸籽多糖分离纯化、结构表征及抗氧化活性[J/OL]. 食品科学: 1−15 [2021-04-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210115.1608.036.html.

    HE K M, WANG G D, BAI X P, et al. Isolation, purification, structure characterization and antioxidant activity of Cornus officinalis seeds polysaccharides[J/OL]. Food Science: 1−15 [2021-04-25]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210115.1608.036.html.
    [30]
    ZHAN Q, WANG Q, LIN R, et al. Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit[J]. International Journal of Biological Macromolecules,2020,145:1080−1090. doi: 10.1016/j.ijbiomac.2019.09.201
    [31]
    叶立斌, 张劲松, 潘迎捷. 食药用菌多糖结构解析中的核磁共振技术[J]. 食用菌学报,2007(4):68−75. [YE L B, ZHANG J S, PAN Y J. Application of NMR techniques in structural analysis of polysaccharides from edible fungi[J]. Acta Edulis Fungi,2007(4):68−75. doi: 10.3969/j.issn.1005-9873.2007.04.014
    [32]
    WANG M, YANG X, ZHAO J, et al. Structural characterization and macrophage immunomodulatory activity of a novel polysaccharide from Smilax glabra Roxb[J]. Carbohydrate Polymers,2017,156:390−402. doi: 10.1016/j.carbpol.2016.09.033
    [33]
    KREMER K N, DINKEL B A, STERNER R M, et al. TCR-CXCR4 signaling stabilizes cytokine mRNA transcripts via a PREX1-Rac1 pathway: Implications for CTCL[J]. Blood,2017,130(8):982−994. doi: 10.1182/blood-2017-03-770982
    [34]
    LIAU N P D, LAKTYUSHIN A, LUCET I S, et al. The molecular basis of JAK/STAT inhibition by SOCS1[J]. Nature Communications,2018,9(1):1558. doi: 10.1038/s41467-018-04013-1
    [35]
    VERGAID E, IERONYMAKI E, LYRONI K, et al. Akt signaling pathway in macrophage activation and M1/M2 polarization[J]. Journal of Immunology, 2017, 198(3): 1006−1014.
    [36]
    LEE J S, KWON D S, LEE K R. Mechanism of macrophage activation induced by polysaccharide from Cordyceps militaris culture broth[J]. Carbohydrate Polymers,2019,120:29−37.
    [37]
    ONYIOL F, TUSIIME G, TRIPATHI J N, et al. Silencing of the mitogen-activated protein kinases(MAPK) Fus3 and Slt2 in Pseudocercospora fijiensis reduces growth and virulence on host plants[J]. Frontiers in Plant Science,2018,9:291. doi: 10.3389/fpls.2018.00291
    [38]
    YU Q, NIE S, WANG J, et al. Polysaccharide from Ganoderma atrum induces tumor necrosis factor-α secretion via phosphoinositide 3-kinase/Akt, mitogen-activated protein kinase and nuclear factor-κB signaling pathways in RAW264.7 cells[J]. International Immunopharmacology, 2012, 14(4): 362−368.
    [39]
    REN D, LIN D, ALIM A, et al. Chemical characterization of a novel polysaccharide ASKP-1 from Artemisia sphaerocephala Krasch seed and its macrophage activation via MAPK, PI3k/Akt and NF-kappa B signaling pathways in RAW264.7 cells[J]. Food & Function, 2017, 8(3): 1299−1312.
    [40]
    FERREIRA S S, PASSOS C P, MADUREIRA P, et al. Structure-function relationships of immunostimulatory polysaccharides: A review[J]. Carbohydrate Polymers,2015,132:378−396. doi: 10.1016/j.carbpol.2015.05.079
    [41]
    MARUYAMA H, YAMAZAKI K, MUROFUSI S, et al. Antitumor activity of Sarcodon aspratus(Berk.) S. Ito and Ganoderma lucidum(Fr.) Karst[J]. Journal of Pharmacobio-Dynamics,1989,12(2):118−123. doi: 10.1248/bpb1978.12.118

Catalog

    Article Metrics

    Article views (191) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return