• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
王宇倩,李亭,郭嘉怡,等. 不同热加工工艺下花椒主要苦味物质的鉴定[J]. 华体会体育,2024,45(23):1−10. doi: 10.13386/j.issn1002-0306.2024050365.
引用本文: 王宇倩,李亭,郭嘉怡,等. 不同热加工工艺下花椒主要苦味物质的鉴定[J]. 华体会体育,2024,45(23):1−10. doi: 10.13386/j.issn1002-0306.2024050365.
WANG Yuqian, LI Ting, GUO Jiayi, et al. Identification of Major Bitter Compounds in Zanthoxylum bungeanum Under Different Thermal Processing Techniques[J]. Science and Technology of Food Industry, 2024, 45(23): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050365.
Citation: WANG Yuqian, LI Ting, GUO Jiayi, et al. Identification of Major Bitter Compounds in Zanthoxylum bungeanum Under Different Thermal Processing Techniques[J]. Science and Technology of Food Industry, 2024, 45(23): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050365.

不同热加工工艺下花椒主要苦味物质的鉴定

Identification of Major Bitter Compounds in Zanthoxylum bungeanum Under Different Thermal Processing Techniques

  • 摘要: 花椒作为重要的香辛料,其苦味成分的存在对食品的整体风味具有显著影响。为了深入探究花椒苦味成分的形成机制及其影响因素,本研究以苦味强度为指标,利用感官评价对花椒在水煮和油炸时的工艺条件进行单因素优化。进一步地,通过有机溶剂萃取、固相萃取和制备型高效液相色谱技术,从花椒水和花椒油中分离并富集了苦味馏分。随后,利用滋味稀释分析评估了这些苦味馏分对食品感官特性的贡献。此外,采用高效液相色谱-质谱联用技术,对花椒水和花椒油中的苦味成分进行了成分鉴定。研究结果表明,在水煮过程中,花椒用量的增加和水煮时间的延长会增强苦味,而花椒的苦味在油炸过程中会随着温度升高、时间延长和用量增加而增强。推荐花椒水和花椒油的食用、加工条件如下:花椒水推荐在100 ℃下煮制5 min,花椒用量控制在2 g以下,以减少苦味。而花椒油建议在105~120 ℃的油炸温度下炸制10~30 min,花椒用量可适量添加,以保持较低苦味。花椒水中主要的苦味物质可能是槲皮素-3-鼠李糖龙胆二糖苷、槲皮素-3,7-二-O-β-D-吡喃葡萄糖苷、槲皮素-3-O-槐糖和荷叶碱,而花椒油中主要的苦味物质是羟基-α-山椒素和羟基-β-山椒素。本研究为花椒的加工利用、品质调控以及除苦抑苦等提供数据参考和理论依据。

     

    Abstract: Zanthoxylum bungeanum, as a vital spice, the presence of its bitter components has a notable impact on the overall flavor of the food. To deeply explore the formation mechanism of the bitter components in Z. bungeanum and correlated influencing factors, this study used bitterness intensity as an indicator and employed sensory evaluation to optimize the processing conditions of Z. bungeanum during boiling and frying through single-factor optimization. Furthermore, organic solvent extraction, solid-phase extraction, and preparative high-performance liquid chromatography were used to isolate and concentrate the bitter fractions from Z. bungeanum water and oil. Subsequently, taste dilution analysis was employed to evaluate the contribution of these bitter fractions to the sensory characteristics of food. Additionally, high-performance liquid chromatography-mass spectrometry was adopted to identify the bitter components in Z. bungeanum water and oil. The results indicated that during the boiling process, increasing the amount of Z. bungeanum and extending the boiling time intensified the bitterness, while the bitterness of Z. bungeanum during frying process increased with raised temperature, extended frying time, and increased amount of Z. bungeanum. The recommended conditions for consumption and processing of Z. bungeanum water and oil were as follows: Z. bungeanum water was recommended to be boiled at 100 ℃ for 5 min, and the dosage of Z. bungeanum controlled less than 2 g to reduce the bitter flavor; Z. bungeanum oil was recommended to be made at 105~120 ℃ for 10~30 min, and the dosage of Z. bungeanum could be added moderately to maintain lower bitter flavor. The main bitter substances in Z. bungeanum water might be quercetin-3-rhamnoglucoside, quercetin-3,7-di-O-β-D-glucopyranoside, quercetin-3-O-robinobioside, and nuciferine, while the primary bitter compounds in Z. bungeanum oil were hydroxy-α-sanshool and hydroxy-β-sanshool. This study provides data reference and theoretical basis for the processing, quality control, and bitterness reduction of Z. bungeanum.

     

/

返回文章
返回