• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李汉强,陈谊,高宇飞,等. ED-Stacking:一种基于集成学习的小样本牛肉微生物生长预测模型构建方法[J]. 华体会体育,2025,46(6):1−13. doi: 10.13386/j.issn1002-0306.2024050005.
引用本文: 李汉强,陈谊,高宇飞,等. ED-Stacking:一种基于集成学习的小样本牛肉微生物生长预测模型构建方法[J]. 华体会体育,2025,46(6):1−13. doi: 10.13386/j.issn1002-0306.2024050005.
LI Hanqiang, CHEN Yi, GAO Yufei, et al. ED-Stacking:A Construction Method of Few-shot Prediction Model for Beef Microbial Growth based on Ensemble Learning[J]. Science and Technology of Food Industry, 2025, 46(6): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050005.
Citation: LI Hanqiang, CHEN Yi, GAO Yufei, et al. ED-Stacking:A Construction Method of Few-shot Prediction Model for Beef Microbial Growth based on Ensemble Learning[J]. Science and Technology of Food Industry, 2025, 46(6): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024050005.

ED-Stacking:一种基于集成学习的小样本牛肉微生物生长预测模型构建方法

ED-Stacking:A Construction Method of Few-shot Prediction Model for Beef Microbial Growth based on Ensemble Learning

  • 摘要: 当前技术条件下,微生物检测操作复杂、耗时长,导致了检测结果滞后且其样本数量有限的问题。本文提出了一种基于时间序列分解和集成学习的小样本牛肉微生物生长预测模型ED-Stacking构建方法,以便提前预警食品中的微生物风险。首先应用经验模态分解(EMD)、离散傅里叶变换(DFT)和加法模型构建时间序列分解方法(EMD-DFT),提取微生物生长时间序列中的趋势、周期和残差特征,为后续预测模型提供训练数据;然后利用这些特征数据对单层线性神经网络(SLN)、极端梯度提升树(XGBoost)和梯度提升回归树(GBRT)进行训练;最后,采用集成学习中的堆叠(Stacking)方法对训练好的三个模型进行融合,形成预测效果更优的微生物生长预测模型ED-Stacking。对比实验结果显示ED-Stacking在MAE和MSE两个指标上分别达到了0.229和0.147,预测误差低于SLN、XGBoost、GBRT、GRU和Transformer五个基线模型,即预测准确性更高。基于该模型对食品品质进行分类,分类的加权平均精准率Weighted-Precision达到98.80%。进而,还构建了一个食品微生物生长预测可视分析系统FMPvis,可以展示预测结果和食品品质分类结果,帮助用户分析各环境因子随时间的变化趋势及其对预测结果的影响程度,从而实现风险分析和预警。本文方法为食品微生物风险预警提供了一种新的思路和方法。

     

    Abstract: Under the current technological conditions, microbial detection was complicated and time-consuming, which leaded to the problem of lagging detecting results and limited sample size. In this paper proposed a construction method of few-shot predictive model for microbial growth in beef, called ED-Stacking, which was based on time series decomposition and ensemble learning, for early warning of microbial risks in food. First, empirical mode decomposition (EMD), discrete Fourier transform (DFT) and additive modeling were applied to construct a time series decomposition method EMD-DFT, which was used to extract the trend, period, and residual features in the microbial growth time series, and to provide training data for the subsequent prediction model. Second, these feature data were then utilized to train a single-layer linear neural network (SLN), extreme gradient boosting (XGBoost) and gradient boosting regression tree (GBRT). Finally, the stacking method in ensemble learning was used to fuse the three trained models to form ED-Stacking, a microbial growth prediction model with better performance in prediction. The results of the comparison experiments showed that ED-Stacking achieves 0.229 and 0.147 in MAE and MSE metrics, respectively, with lower prediction errors than the five baseline models of SLN, XGBoost, GBRT, GRU, and Transformer. Based on this model, the food quality classification was performed and the weighted precision of the classification, Weighted-Precision, reached 98.80%. Furthermore, the study also presented FMPvis, a visual analysis system for the prediction of microbial growth in food, which can display the prediction results and the food quality classification results, and help users to analyze the trend of each environmental factor over time and its influence on the prediction results, so as to facilitate risk analysis and early warning. This approach contributes a new idea for early warning of microbial risk in food.

     

/

返回文章
返回