• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
葛宏义,郭春燕,蒋玉英,等. 基于可见光和先进成像技术的粮食不完善粒快速检测研究进展[J]. 华体会体育,2025,46(6):1−14. doi: 10.13386/j.issn1002-0306.2024040493.
引用本文: 葛宏义,郭春燕,蒋玉英,等. 基于可见光和先进成像技术的粮食不完善粒快速检测研究进展[J]. 华体会体育,2025,46(6):1−14. doi: 10.13386/j.issn1002-0306.2024040493.
GE Hongyi, GUO Chunyan, JIANG Yuying, et al. Research Progress on Rapid Detection of Unsound Kernels Based on Visible Light and Advanced Imaging Technology[J]. Science and Technology of Food Industry, 2025, 46(6): 1−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040493.
Citation: GE Hongyi, GUO Chunyan, JIANG Yuying, et al. Research Progress on Rapid Detection of Unsound Kernels Based on Visible Light and Advanced Imaging Technology[J]. Science and Technology of Food Industry, 2025, 46(6): 1−14. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040493.

基于可见光和先进成像技术的粮食不完善粒快速检测研究进展

Research Progress on Rapid Detection of Unsound Kernels Based on Visible Light and Advanced Imaging Technology

  • 摘要: 粮食中不完善粒的存在会降低粮食质量,影响粮食加工产品的品质,并且不完善粒的含量会影响粮食在国家规定的收购标准中的质量等级评定,造成经济损失。传统的检测方法包括人工检测法和化学试剂法等,这些方法存在主观性强、耗时较长等问题,难以满足目前前沿研究向快速、准确检测发展的主要趋势。可见光成像技术操作简便且成像速度较快、但其无法识别粮食内部的特征信息。具有高分辨率和快速检测等优势的先进成像技术也成为粮食不完善粒检测领域的重要研究热点之一。本文综述了用于粮食不完善粒检测的成像技术,包括可见光成像、X射线、热成像、高光谱和多光谱成像以及太赫兹成像等,对这些技术的优缺点进行讨论和比较。分别从粮食的视觉外观和内部特征信息两方面进行介绍,总结了成像技术与机器学习方法结合在粮食不完善粒检测方面的研究进展。最后提出现阶段存在的问题并进行讨论,对未来改进方向进行展望,为粮食不完善粒检测的创新应用提供重要参考。

     

    Abstract: The presence of unsound kernels in grain reduces its quality and adversely affects processed grain products. The content of unsound kernels also impacts the quality grading of grain according to national purchase standards, leading to economic losses. Traditional detection methods such as manual inspection and chemical reagents are subjective, time-consuming, and do not align with current trends favoring rapid and precise detection. Visible light imaging technology offers fast operation and imaging speed but cannot discern internal grain characteristics. Advanced imaging technologies with high resolution and rapid detection capabilities have thus become pivotal in the field of unsound kernel detection. This paper reviews various imaging techniques utilized for detecting unsound kernels in grain, including visible light imaging, X-ray, thermal imaging, hyperspectral and multispectral imaging, and terahertz imaging. It discusses and compares the strengths and weaknesses of these techniques. The paper introduces the visual appearance and internal feature information of grain separately, highlighting the research progress in combining imaging techniques with machine learning methods for unsound kernel detection. Finally, it outlines current challenges and discusses future directions for improvement, aiming to provide valuable insights for innovative applications in unsound kernel detection in grain.

     

/

返回文章
返回