• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
费致根,郭兴,宋晓晓,等. 基于改进RetinaNet模型速冻水饺表面 缺陷检测[J]. 华体会体育,2025,46(6):1−11. doi: 10.13386/j.issn1002-0306.2024040041.
引用本文: 费致根,郭兴,宋晓晓,等. 基于改进RetinaNet模型速冻水饺表面 缺陷检测[J]. 华体会体育,2025,46(6):1−11. doi: 10.13386/j.issn1002-0306.2024040041.
FEI Zhigen, GUO Xing, SONG Xiaoxiao, et al. Surface Defect Detection of Frozen Dumplings Based on Improved RetinaNet Model[J]. Science and Technology of Food Industry, 2025, 46(6): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040041.
Citation: FEI Zhigen, GUO Xing, SONG Xiaoxiao, et al. Surface Defect Detection of Frozen Dumplings Based on Improved RetinaNet Model[J]. Science and Technology of Food Industry, 2025, 46(6): 1−11. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024040041.

基于改进RetinaNet模型速冻水饺表面 缺陷检测

Surface Defect Detection of Frozen Dumplings Based on Improved RetinaNet Model

  • 摘要: 目的:提升速冻水饺表面缺陷检测的精度。方法:制作了包含五种冻饺形态(正常、露馅、半饺、破肚、粘连)的数据集,提出了用于速冻水饺表面缺陷检测与定位的网络模型GX-RetinaNet。该模型基于RetinaNet网络改进,主干特征提取网络采用ResNeXt-50模型,增强网络特征提取能力,引入卷积块注意力模块(Convolutional Block Attention Module,CBAM)与Swish激活函数有效抑制背景噪声,通过在特征金字塔模块(Feature Pyramid Networks,FPN)后增加PAN结构(Path Aggregation Network)组成双向特征融合模块,可以提升对目标多尺度特征信息的融合能力。结果:GX-RetinaNet网络对工业现场条件下速冻水饺表面缺陷的在线检测精度优于主流的几种目标检测网络,其mAP为94.8%,Recall为77.0%,F1-score为84.9%。与RetinaNet网络相比,mAP、Recall和F1分别提高了近2.6%、2.6%、2.4%。结论:GX-RetinaNet网络模型可以满足冻饺表面缺陷检测精度的要求,本研究为深度学习理论在速冻水饺表面缺陷检测方面的应用提供了一种可行的方法。

     

    Abstract: Objective: To improve the accuracy of surface defect detection of quick-frozen dumplings. Methods: A dataset covering five quick-frozen dumpling forms (normal, leak, half, broken and adhesion) was elaborated, and the GX-RetinaNet network model was proposed for surface defect detection and localization of quick-frozen dumplings. The model was improved based on the RetinaNet network. The backbone feature extraction network adopted the ResNeXt-50 model, which had strong feature extraction ability. The addition of the Convolutional Block Attention Module (CBAM) and the use of the Swish activation function could effectively suppress the influence of background noise. By adding the Path Aggregation Network (PAN) structure behind the Feature Pyramid Networks (FPN) structure to form a bidirectional feature fusion module, the fusion ability of target multi-scale feature information could be improved. Results: The online detection accuracy of the GX-RetinaNet network for surface defects of quick-frozen dumplings under industrial field conditions was better than that of several mainstream target detection networks. The mAP was 94.8 %, the Recall was 77.0 % and the F1-score was 84.9 %. Compared with the RetinaNet network, mAP, Recall, and F1 increased by nearly 2.6 %, 2.6 % and 2.4 %. Conclusions: The GX-RetinaNet network model could meet the requirements of surface defect detection accuracy of quick-frozen dumplings. This study provided a feasible method for the application of deep learning theory in the surface defect detection of frozen dumplings.

     

/

返回文章
返回