• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
贾润琪,唐玉杰,何伟炜,等. 抗坏血酸在黄原胶体系中的降解动力学[J]. 华体会体育,2025,46(3):1−8. doi: 10.13386/j.issn1002-0306.2024030137.
引用本文: 贾润琪,唐玉杰,何伟炜,等. 抗坏血酸在黄原胶体系中的降解动力学[J]. 华体会体育,2025,46(3):1−8. doi: 10.13386/j.issn1002-0306.2024030137.
JIA Runqi, TANG Yujie, HE Weiwei, et al. Degradation Kinetics of Ascorbic Acid in Xanthan Gum Solution[J]. Science and Technology of Food Industry, 2025, 46(3): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030137.
Citation: JIA Runqi, TANG Yujie, HE Weiwei, et al. Degradation Kinetics of Ascorbic Acid in Xanthan Gum Solution[J]. Science and Technology of Food Industry, 2025, 46(3): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030137.

抗坏血酸在黄原胶体系中的降解动力学

Degradation Kinetics of Ascorbic Acid in Xanthan Gum Solution

  • 摘要: 抗坏血酸(Ascorbic acid,AA)会与多糖反应导致多糖的流变及结构特性发生变化,然而这一反应过程中AA的降解特征及其降解动力学尚待进一步研究。本文以具有高黏性及良好稳定性的黄原胶(Xanthan gum,XG)作为多糖基构建模拟体系,探究了不同底物浓度、反应温度以及添加H2O2或金属离子(Fe2+与Cu2+)等反应条件下AA在XG溶液中的变化过程。结果表明,相比于纯水体系,AA在XG溶液中的降解程度更为显著,1 mmol/L的AA降解率在体系中存在0.2%XG(w/v)时由初始的7.03%增加至11.72%;提高反应温度也会加速AA与XG的反应,90 ℃加热处理1 h会导致AA降解率增加至45.59%;AA在该体系下的降解过程符合二级反应动力学规律。添加H2O2以及金属离子(Fe2+与Cu2+)会明显加速AA的降解,而XG溶液体系会减弱金属离子对AA的降解效果,故而金属离子与XG对AA的降解具有拮抗作用。因此,AA在纯水中加热会发生降解,而添加XG以及H2O2与金属离子(Fe2+与Cu2+)均会改变AA的降解速率,以上结果为控制食品加工过程中AA的降解提供了重要的数据支持。

     

    Abstract: Ascorbic acid (AA) reacts with polysaccharides, resulting in changes in the rheological and structural properties of the polysaccharides. However, the degradation characteristics of AA and its degradation kinetics during this reaction require further investigation. In this study, xanthan gum (XG), a highly viscous and stable polysaccharide, was employed as the polysaccharide base for the construction of a simulation system. The changes of AA in XG solutions were investigated under varying substrate concentrations, reaction temperatures, and reaction conditions, including the addition of H2O2 or metal ions (Fe2+ and Cu2+). The results showed that the degradation of AA within XG solution surpassed that in pure water. Particularly, the degradation rate of AA, which was originally 7.03% in the absence of XG, increased to 11.72% when 0.2%XG (w/v) was present in the system at a concentration of 1 mmol/L. In addition, elevated reaction temperature accelerated the reaction between AA and XG, leading to a degradation rate of AA increased to 45.59% after heating at 90 ℃ for 1 h. The degradation process of AA in this system followed the second-order reaction kinetics equation. The presence of H2O2 and metal ions (Fe2+ and Cu2+) notably accelerated AA degradation, whereas the XG solution system attenuated the degradation impact of metal ions on AA. It was found that the degradation of AA by metal ions and XG was antagonistic. In conclusion, thermal treatment of AA in pure water induced its degradation, with the addition of XG, H2O2, and metal ions (Fe2+ and Cu2+) significantly affected the degradation rate of AA. These findings hold significance for the regulation of AA degradation in food processing contexts.

     

/

返回文章
返回