• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
夏张晨,孟晓慧,方茹,等. 金顶侧耳麦角硫因对胰脂肪酶的抑制作用[J]. 华体会体育,2025,46(4):1−10. doi: 10.13386/j.issn1002-0306.2024030119.
引用本文: 夏张晨,孟晓慧,方茹,等. 金顶侧耳麦角硫因对胰脂肪酶的抑制作用[J]. 华体会体育,2025,46(4):1−10. doi: 10.13386/j.issn1002-0306.2024030119.
XIA Zhangchen, MENG Xiaohui, FANG Ru, et al. Inhibition Mechanism of Pleurotus Citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030119.
Citation: XIA Zhangchen, MENG Xiaohui, FANG Ru, et al. Inhibition Mechanism of Pleurotus Citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity[J]. Science and Technology of Food Industry, 2025, 46(4): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030119.

金顶侧耳麦角硫因对胰脂肪酶的抑制作用

Inhibition Mechanism of Pleurotus Citrinipileatus Sing. Ergothioneine on Pancreatic Lipase Activity

  • 摘要: 为探究金顶侧耳麦角硫因的降脂作用机理,采用酶动力学、紫外吸收、内源荧光、同步荧光、三维荧光等多光谱和分子对接技术研究了其与胰脂肪酶之间的相互作用。结果表明:金顶侧耳麦角硫因对胰脂肪酶具有可逆非竞争型抑制作用,其半抑制浓度为15.29 mg/mL。紫外光谱显示随着加样浓度的升高,胰脂肪酶的肽键C=O基团产生ππ*跃迁现象,疏水性减弱,亲水性变强,极性增大。荧光光谱揭示它能改变胰脂肪酶的空间结构,以静态方式有效猝灭其内源荧光,在298 K下结合常数Ka达到1.55×103 L/mol,位点数约为1。两者结合的热力学参数焓变ΔH和熵变ΔS分别为-8.57 kJ/mol与2.55 J·mol/K,主要以氢键与静电作用互作;同步和三维荧光发现,随着样品浓度增加,最大吸收峰分别红移6和3 nm,荧光强度分别下降32.2%和25.6%,进一步证实两者结合使胰脂肪酶分子微环境疏水性减弱,极性增强。分子对接表明,麦角硫因分子可在酶催化活性中心外以氢键、电荷吸引及范德华力结合在残基位点上,从而抑制该酶活性。本研究有助于从分子水平上深入了解金顶侧耳麦角硫因的胰脂肪酶抑制作用,为后续该类食品资源加工提供基础。

     

    Abstract: The interaction between Pleurotus citrinipileatus Sing. ergothioneine (PCEGT) and pancreatic lipase (PL) was studied by analyzing multiple spectroscopies including enzyme kinetics, ultraviolet absorption (UV), fluorescence spectroscopy, synchronous fluorescence spectroscopy and 3D fluorescence spectroscopy as well as the PCEGR-PL interaction mechanism by molecular docking in order to clarify its inhibitory mechanism. The results showed that the inhibition process of PCEGT on PL was reversible non-competitive with 15.29 mg/mL of the half-maximal inhibitory concentration (IC50). The UV spectrum indicated there was a ππ* transition produced by the peptide bond C=O group of PL as the mass concentration of PCEGT increased, which could reflect the reinforcement of polarity and hydrophilicity. Fluorescence spectra data revealed PCEGT could efficiently static-quench the intrinsic fluorescence of PL by changing its space structure. Based on the Lineweaver-Burk equation, the binding constants (Ka) under three different temperatures were obtained. Among them the Ka value was estimated to be 1.55×103 L/mol with approximately 1 binding site at 298 K. The thermodynamic parameters including enthalpy change and enthopy change calculated by van't Hoff's law were to be -8.57 kJ/mol and 2.55 J·mol/K, respectively. PCEGT might combine with the amino acid residues of PL via hydrogen bonding and electrostatic force. With the increase of the concentration of PCEGT, synchronous fluorescence intensity and 3D fluorescence spectra demonstrated that the failing hydrophobicity and incremental polarity of PL can be achieved evidencing by obvious redshifts of maximum absorption peaks (6 and 3 nm) and descent fluorescence intensities (32.2% and 25.6%). Molecular docking results further reinforced that PCEGT interacted with amino acids outside catalytic site of PL via hydrogen bonding, charge attraction and van der waals' force, resulting in the inhibition of PL. This study was beneficial for the deep understanding the hyperlipidemia of PCEGT from molecular mechanism and boosted the future health food processing of Pleurotus citrinipileatus Sing.

     

/

返回文章
返回