• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王丹,栾雨晴,谭佐军,等. 基于高光谱和卷积神经网络的西兰花 农药残留检测[J]. 华体会体育,2025,46(6):1−8. doi: 10.13386/j.issn1002-0306.2024020189.
引用本文: 王丹,栾雨晴,谭佐军,等. 基于高光谱和卷积神经网络的西兰花 农药残留检测[J]. 华体会体育,2025,46(6):1−8. doi: 10.13386/j.issn1002-0306.2024020189.
WANG Dan, LUAN Yuqing, TAN Zuojun, et al. Pesticide Residue Detection in Broccoli Based on Hyperspectral Technology and Convolutional Neural Network[J]. Science and Technology of Food Industry, 2025, 46(6): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020189.
Citation: WANG Dan, LUAN Yuqing, TAN Zuojun, et al. Pesticide Residue Detection in Broccoli Based on Hyperspectral Technology and Convolutional Neural Network[J]. Science and Technology of Food Industry, 2025, 46(6): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020189.

基于高光谱和卷积神经网络的西兰花 农药残留检测

Pesticide Residue Detection in Broccoli Based on Hyperspectral Technology and Convolutional Neural Network

  • 摘要: 农产品农药残留检测是保证农产品食用安全的重要环节,而传统检测方法步骤繁琐、成本高昂。本文利用高光谱技术结合机器学习算法和深度学习算法,以西兰花农药残留检测为样本,提供了一种简便快速、成本低、无损的西兰花农药残留检测方法。研究通过采集喷洒了不同种类农药和清水的西兰花样本400~1000 nm高光谱图像,经过多元散射校正(MSC)、Savitzky-Golay卷积平滑(SG平滑)两种数据预处理方法,和主成分分析法(PCA)、竞争性自适应重加权算法(CARS)、连续投影算法(SPA)三种数据降维后,建立支持向量机(SVM)识别模型进行农药残留判别。得到SVM-SG-SPA组合判别效果最好,其对高效氯氰菊酯、毒死蜱、吡虫啉和清水的识别精度分别达到92.86%、 94.29%、91.43%和92.86%。用原始光谱数据建立一维卷积神经网络(1D-CNN)模型,其对高效氯氰菊酯、毒死蜱、吡虫啉和清水的识别精度达到94.29%、 95.71%、94.29%和97.14%,识别精度均高于SVM模型。结果表明,高光谱成像技术结合一维卷积神经网络的深度学习算法,不仅简化了对西兰花农药残留的识别过程,还提升了识别效率和识别精度。

     

    Abstract: The detection of pesticide residues in agricultural products is an important step in ensuring the food safety of agricultural products, while traditional detection methods are cumbersome and costly. Using broccoli as a sample, this article used hyperspectral technology combined with machine learning algorithms and deep learning algorithms to provide a simple, fast, low-cost, and non-destructive method for detecting pesticide residues in broccoli. The study collected hyperspectral images in 400~1000 nm of broccoli samples sprayed with different types of pesticides and clean water. Two data preprocessing methods, namely Multivariate Scattering Correction (MSC) and Savitzky Golay Smoothing (SG Smoothing), as well as Principal Component Analysis (PCA), Competitive Adaptive Reweighted Sampling (CARS), and Successive Projection Algorithm (SPA) were used to reduce the dimensionality. A Support Vector Machine (SVM) recognition model was established for pesticide residue discrimination. The SVM-SG-SPA combination has the best discrimination effect, with recognition accuracy of 92.86%, 94.29%, 91.43%, and 92.86% for high-efficiency cypermethrin, chlorpyrifos, imidacloprid, and water, respectively. A one-dimensional convolutional neural network (1D-CNN) model was established using raw spectral data, which achieved recognition accuracy of 94.29%, 95.71%, 94.29%, and 97.14% for high-efficiency cypermethrin, chlorpyrifos, imidacloprid, and water, all of which were higher than the SVM model. The results indicate that the combination of hyperspectral imaging technology and deep learning algorithms as 1D-CNN not only simplifies the recognition process of pesticide residues in broccoli, but also improves recognition efficiency and accuracy.

     

/

返回文章
返回