• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农林核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
郭毫单,吴影,韦玉琼,等. 凝结魏茨曼氏菌BC99应急能量棒研制及抗疲劳效应研究[J]. 华体会体育,2025,46(1):1−13. doi: 10.13386/j.issn1002-0306.2024010361.
引用本文: 郭毫单,吴影,韦玉琼,等. 凝结魏茨曼氏菌BC99应急能量棒研制及抗疲劳效应研究[J]. 华体会体育,2025,46(1):1−13. doi: 10.13386/j.issn1002-0306.2024010361.
GUO Haodan, WU Ying, WEI Yuqiong, et al. Study on the Preparation and Anti-fatigue Function of Weizmannia coagulans BC99 Emergency Energy Bar[J]. Science and Technology of Food Industry, 2025, 46(1): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010361.
Citation: GUO Haodan, WU Ying, WEI Yuqiong, et al. Study on the Preparation and Anti-fatigue Function of Weizmannia coagulans BC99 Emergency Energy Bar[J]. Science and Technology of Food Industry, 2025, 46(1): 1−13. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010361.

凝结魏茨曼氏菌BC99应急能量棒研制及抗疲劳效应研究

Study on the Preparation and Anti-fatigue Function of Weizmannia coagulans BC99 Emergency Energy Bar

  • 摘要: 目的:本研究旨在开发一种具有高营养、高能量、抗疲劳的益生菌应急能量棒。方法:以感官评分为响应值,采用 Box-Behnken 中心组合设计试验对能量棒夹心工艺进行优化,测定产品的蛋白质、脂肪、碳水化合物、水分、灰分、粗纤维含量、氨基酸组成、脂肪酸组成。通过连续3周游泳训练构建疲劳小鼠模型,检测小鼠游泳力竭时间、糖原含量及血清中疲劳因子含量、炎症因子含量、氧化应激因子含量,研究益生菌能量棒的抗疲劳功能。结果:益生菌能量棒夹心最优制作条件为:坚果添加量35 g,燕麦片添加量45 g,奇亚籽添加量15 g,糖浆复合比(W麦芽糖:W白砂糖)2.0,加工时间为9.0 min。在此条件下,凝结魏茨曼氏菌BC99(Weizmannia coagulans BC99)能量棒夹心的感官评分为93分;包衣涂层中含凝结魏茨曼氏菌BC99活菌数1.43×108 CFU/g,营养成分测定表明,能量棒必需氨基酸和不饱和脂肪酸含量丰富。益生菌能量棒干预结果显示,该产品能显著提高机体肝糖原、肌糖原含量(P<0.05),显著提高葡萄糖代谢关键酶己糖激酶水平(P<0.05),显著降低血清中疲劳因子乳酸、尿素氮水平(P<0.05),改善炎症因子白细胞介素-4、白细胞介素-1β水平,显著增加过氧化氢酶、超氧化物歧化酶、谷胱甘肽含量(P<0.05),显著降低丙二醛含量(P<0.05)。结论:凝结魏茨曼氏菌BC99应急能量棒能够缓解机体疲劳感,改善炎症水平,降低运动引起的氧化应激损伤,本研究可为益生菌能量棒应急食品的开发提供技术和理论支撑。

     

    Abstract: Objective: This study aimed to design and fabricate a probiotic Weizmannia coagulans BC99 (W. coagulans BC99) emergency energy bar with high nutrition, high energy, and anti-fatigue properties. Methods: Taking sensory evaluation as the response value, the formulation of energy bar sandwich was optimized by a Box-Behnken central composite design experiment. The contents of protein, fat, carbohydrate, moisture, ash, dietary fiber, and the composition of amino acid and fatty acid were analyzed. Subsequently, a fatigue mice model was established through three weeks of swimming training to evaluate the anti-fatigue function of the probiotic energy bar. The corresponding exhaustion time, glycogen content, and contents of fatigue factors, inflammatory cytokines, and oxidative stress factors in serum were measured. Results: The optimal conditions of the probiotic energy bar sandwich were as follows: 35 g of nuts, 45 g of oats, 15 g of chia seeds, syrup composite ratio of 2.0, and stirring time of 9.0 minutes. Under these conditions, the sensory evaluation of the energy bar sandwich containing W. coagulans BC99 probiotics was 93. The coating of the energy bar contained a count of W. coagulans BC99 of 1.43×108 CFU/g, and the nutritional analysis showed abundant essential amino acids and unsaturated fatty acids. The intervention with the W. coagulans BC99 energy bar resulted in significantly increased levels of liver glycogen and muscle glycogen (P<0.05), significantly enhanced glucose metabolism key enzyme hexokinase (P<0.05), significant reduction in fatigue factors lactate and urea nitrogen in serum (P<0.05), regulated levels of inflammatory cytokines interleukin-4 and interleukin-1β, significantly increased levels of catalase, superoxide dismutase, and glutathione (P<0.05), and significantly decreased levels of malondialdehyde (P<0.05). Conclusion: The W. coagulans BC99 probiotic emergency energy bar could alleviate fatigue, balanced the levels of inflammatory cytokines, and relieved exercise-induced oxidative stress damage. It is expected to provide technical and theoretical support for the development of probiotic-rich emergency food through this study.

     

/

返回文章
返回