• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
刘梦文,沈静,陈宣世,等. 指纹图谱结合网络药理学预测桑叶潜在功能成分[J]. 华体会体育,2024,45(23):39−49. doi: 10.13386/j.issn1002-0306.2023120197.
引用本文: 刘梦文,沈静,陈宣世,等. 指纹图谱结合网络药理学预测桑叶潜在功能成分[J]. 华体会体育,2024,45(23):39−49. doi: 10.13386/j.issn1002-0306.2023120197.
LIU Mengwen, SHEN Jing, CHEN Xuanshi, et al. Predictive Analysis of Potential Functional Components in Mori Folium Based on Fingerprint and Network Pharmacology[J]. Science and Technology of Food Industry, 2024, 45(23): 39−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120197.
Citation: LIU Mengwen, SHEN Jing, CHEN Xuanshi, et al. Predictive Analysis of Potential Functional Components in Mori Folium Based on Fingerprint and Network Pharmacology[J]. Science and Technology of Food Industry, 2024, 45(23): 39−49. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120197.

指纹图谱结合网络药理学预测桑叶潜在功能成分

Predictive Analysis of Potential Functional Components in Mori Folium Based on Fingerprint and Network Pharmacology

  • 摘要: 目的:建立桑叶指纹图谱,并通过联合网络药理学及分子对接技术,预测桑叶中的潜在功能成分。方法:采用高效液相色谱(HPLC)技术建立桑叶指纹图谱,并进行相似度评价和主成分分析。进一步,结合网络药理学构建“成分-靶点-通路”网络,并通过分子对接进行虚拟验证。结果:通过HPLC技术建立了13批桑叶指纹图谱,并在13个共有峰中指认出1号峰为新绿原酸、3号峰绿原酸、4号峰隐绿原酸、6号峰芦丁、7号峰异槲皮苷、9号峰异绿原酸 B、10号峰紫云英苷、11号峰异绿原酸 A、12号峰异绿原酸 C。主成分分析发现,桑叶指纹图谱中的13个共有峰均可作为特征化学成分参与质量控制过程。网络药理学分析预测得到异绿原酸 A、异绿原酸 B、异绿原酸 C、芦丁、异槲皮苷、紫云英苷可作为桑叶的潜在功能成分,作用于肿瘤坏死因子-α(TNF-α)、胱天蛋白酶1/3/8(CASP1/3/8)等7个潜在靶点,并通过调节脂质与动脉粥样硬化、癌症和血清素能突触等信号通路发挥抗衰老、保护神经和心血管的效用。分子对接的结果进一步验证了这些核心成分与潜在靶点间具有良好的结合性能。结论:通过HPLC指纹图谱及网络药理学预测了桑叶的潜在功能成分及作用机制,为桑叶的质量控制与功效应用开发提供了科学依据。

     

    Abstract: Objective: To establish the high-performance liquid chromatography (HPLC) fingerprints of Mori Folium and predict its potential functional ingredients using network pharmacology and molecular docking approaches. Method: HPLC was utilized to create the fingerprint profile of Mori Folium, followed by similarity assessment and principal component analysis. A "component-target-pathway" network was then constructed employing network pharmacology, complemented by molecular docking for virtual validation. Results: The fingerprints of 13 batches of Mori Folium were established. Among the 13 common peaks, neochlorogenic acid (peak 1), chlorogenic acid (peak 3), cryptochlorogenic acid (peak 4), rutin (peak 6), isoquercitrin (peak 7), isochlorogenic acid B (peak 9), astragalin (peak 10), isochlorogenic acid A (peak 11), and isochlorogenic acid C (peak 12) were identified. Additionally, principal component analysis revealed that all 13 common peaks in Mori Folium could be utilized in the quality control process as characteristic chemical components. Network pharmacology predicted that isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C, rutin, isoquercitrin, and astragalin could act as potential functional ingredients of Mori Folium, acting on seven key targets (TNF-α, CASP1, CASP3, CASP8, etc.) and regulating the lipid-atherosclerosis, cancer and serotonergic synapses signaling pathways, thereby exerting anti-aging, neuroprotective, and cardiovascular protective effects. The molecular docking results further demonstrated good binding interactions between these core components and the core targets. Conclusion: Utilizing HPLC fingerprinting and network pharmacology, this study has delineated the potential functional ingredients and their mechanisms of action in Mori Folium, establishing a foundation for its quality control and subsequent functional development.

     

/

返回文章
返回