• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
刘国祎,郭建章,陈星,等. 响应面法和人工神经网络对亚临界CO2萃取红花籽油的建模与优化[J]. 华体会体育,2024,45(10):225−233. doi: 10.13386/j.issn1002-0306.2023070185.
引用本文: 刘国祎,郭建章,陈星,等. 响应面法和人工神经网络对亚临界CO2萃取红花籽油的建模与优化[J]. 华体会体育,2024,45(10):225−233. doi: 10.13386/j.issn1002-0306.2023070185.
LIU Guoyi, GUO Jianzhang, CHEN Xing, et al. Modeling and Optimization of Subcritical CO2 Extraction of Safflower Seed Oil Using Response Surface Methodology and Artificial Neural Networks[J]. Science and Technology of Food Industry, 2024, 45(10): 225−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070185.
Citation: LIU Guoyi, GUO Jianzhang, CHEN Xing, et al. Modeling and Optimization of Subcritical CO2 Extraction of Safflower Seed Oil Using Response Surface Methodology and Artificial Neural Networks[J]. Science and Technology of Food Industry, 2024, 45(10): 225−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070185.

响应面法和人工神经网络对亚临界CO2萃取红花籽油的建模与优化

Modeling and Optimization of Subcritical CO2 Extraction of Safflower Seed Oil Using Response Surface Methodology and Artificial Neural Networks

  • 摘要: 本文旨在寻找有效建模方法以预测亚临界CO2萃取红花籽油的萃取率,优化其萃取工艺条件。以单因素实验为基础,采用Box-Behnken试验设计,研究了萃取压力、分离温度、萃取时间对红花籽油萃取率的影响,并采用响应面法(RSM)和人工神经网络(ANN)两种方法分别对同一实验进行建模分析,通过RSM数值优化、人工神经网络和遗传算法结合(ANN-GA)两种方法优化其工艺条件。结果表明,RSM与ANN两种模型均能较为精准预测,但通过两种模型的决定系数(R2)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)、均方根误差(RMSE)值比较,得出ANN模型(R2=0.9966)的预测效果较优于RSM模型(R2=0.9950)。ANN-GA确定的最佳萃取条件及萃取率分别为:萃取压力19.04 MPa、分离温度55.50 ℃、萃取时间134.98 min、萃取率23.52%。综上,RSM和ANN两种方法均可用于亚临界CO2萃取带壳红花籽油的建模与优化,但ANN的预测准确度及拟合能力更为优秀。

     

    Abstract: This article aimed to find effective modeling methods to predict the extraction rate of safflower seed oil by subcritical CO2 extraction, and optimize its extraction process conditions. Based on single-factor experiments, Box-Behnken experimental design was adopted to study the effects of extraction pressure, separation temperature, and extraction time on the extraction rate of safflower seed oil. Response surface methodology (RSM) and artificial neural network (ANN) were used to model and analyze the same experiment. The process conditions were optimized using RSM numerical optimization, ANN, and the combination of artificial neural network and genetic algorithm (ANN-GA). The results showed that both RSM and ANN models could accurately predict the extraction rate. However, by comparing the determination coefficient (R2), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) values of the two models, it was concluded that the ANN model (R2=0.9966) had a better predictive effect than the RSM model (R2=0.9950). The optimal extraction conditions and extraction rate determined by ANN-GA were as follows: Extraction pressure of 19.04 MPa, separation temperature of 55.50 °C, extraction time of 134.98 min, and extraction rate of 23.52%. The study showed that both RSM and ANN methods could be used for modeling and optimization of subcritical CO2 extraction of safflower seed oil, but ANN had better prediction accuracy and fitting ability.

     

/

返回文章
返回