Abstract:
In order to alleviate the oxidation rate of hazelnut oil, increase the storage period and expand its application range, this study used
β-cyclodextrin (
β-CD) as the wall material and used the ultrasonic-assisted molecular embedding method to prepare hazelnut oil microcapsules, the process conditions of the microcapsules were optimized by response surface method, and their physical and chemical properties were measured at the same time. The results showed that when the wall material concentration (H
2O/
β-CD) was 16:1, the wall-to-core ratio was 5:1, the embedding time was 62 min, and the embedding temperature was 59.3 ℃, the embedding rate of microcapsules was up to 69.18%, and the yield rate reached 59.74%. The average particle size of the microcapsules was 880.4 nm, the moisture content was 2.85%, the solubility was 55.95%, and the angle of repose was 42.49°. The results of scanning electron microscopy, infrared spectroscopy and thermogravimetric analysis showed that the microcapsules had a block, diamond-shaped flake or irregular columnar structure, the embedded material had been formed, and had good thermal stability. Accelerated oxidation experiments showed that microencapsulation could effectively slow down the oxidation rate of hazelnut oil, extend the shelf life, and expand its application range.