• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
冯小娜, 齐娜, 宋伟, 刘佳, 刘立明, 吴静. 蛋白质工程改造磷脂酶D提高磷脂酰丝氨酸产量[J]. 华体会体育, 2020, 41(17): 98-103,108. DOI: 10.13386/j.issn1002-0306.2020.17.016
引用本文: 冯小娜, 齐娜, 宋伟, 刘佳, 刘立明, 吴静. 蛋白质工程改造磷脂酶D提高磷脂酰丝氨酸产量[J]. 华体会体育, 2020, 41(17): 98-103,108. DOI: 10.13386/j.issn1002-0306.2020.17.016
FENG Xiao-na, QI Na, SONG Wei, LIU Jia, LIU Li-ming, WU Jing. Protein Engineering of Phospholipase D to Improve the Production of Phosphatidylserine[J]. Science and Technology of Food Industry, 2020, 41(17): 98-103,108. DOI: 10.13386/j.issn1002-0306.2020.17.016
Citation: FENG Xiao-na, QI Na, SONG Wei, LIU Jia, LIU Li-ming, WU Jing. Protein Engineering of Phospholipase D to Improve the Production of Phosphatidylserine[J]. Science and Technology of Food Industry, 2020, 41(17): 98-103,108. DOI: 10.13386/j.issn1002-0306.2020.17.016

蛋白质工程改造磷脂酶D提高磷脂酰丝氨酸产量

Protein Engineering of Phospholipase D to Improve the Production of Phosphatidylserine

  • 摘要: 为了进一步提高磷脂酰丝氨酸(PS)产量,将来源于Streptomyces katrae的野生型磷脂酶D(SkPLD)于E.coli BL21(DE3)中进行异源表达,获得菌株E.coli BL21(DE3)/pET28a-SkPLD,以磷脂酰胆碱(PC)和L-serine为底物,发现限制PS产量进一步提高的限制因素是转磷脂酰反应转化率低(<35%)而水解反应转化率过高(>30%)。在对SKPLD结构进行详尽分析的基础上,通过蛋白质工程改造策略扩大底物催化通道,降低位阻效应;同时提高His462与L-serine的亲和力,降低水解反应。结果表明,获得4个有益单突变体(Y405A、Q407G、D370P、K478P),对其进行组合突变,获得四突变体SkPLDY405A/Q407G/D370P/K478P,转化率、PS产量、kcat/Km分别为55.6%、42.3 g·L-1、1.53(mmol/L)-1s-1,比野生型分别提高了59.8%、59.6%、93.7%。PS产量进一步提高的原因在于四突变体催化腔体积扩大到718.6 Å3,且His462 N原子与L-serine O原子的催化距离(d1)缩短0.6 Å,与H2O O原子的距离(d2)增加0.8 Å。在3 L规模转化体系中,PS产量为50.4 g·L-1、转化率达到66.3%,时空产率为12.6 g/L/h。本研究利用蛋白质工程改造获得了转磷脂酰活性提高的突变体,为提高磷脂酶D的工业生产奠定了坚实的基础。

     

    Abstract: In order to further increase the phosphatidylserine(PS)titer,the wild-type phospholipase D origined from Streptomyces katrae was heterologously expressed in E.coli BL21(DE3)to obtain the strain E.coli BL21(DE3)/pET28a-SkPLD. Using phosphatidylcholine(PC)and L-serine as substrates,the bottleneck of PS titer increasing was the lower reaction rate of transphosphatidyl reaction(<35%)and the higher reaction rate of hydrolysis reaction(>30%). Following the structure of SKPLD,the steric hindrance effect of PC and the hydrolysis reaction were reduced though expanding the substrate catalytic channels and increasing the affinity of His462 and L-serine. In addition,the affinity of His462 and L-serine was increased to reduce the hydrolysis reaction simultaneously. As a result,four amino acid residues(Y405,Q407,D370,and K478)were chosen and the best mutant SkPLDY405A/Q407G/D370P/K478P was obtained,and the conversion rate,PS titer,and catalytic efficiency was achieved at 55.6%,42.3 g·L-1,1.53 (mmol/L)-1s-1,respectively,59.8%,59.6%,93.7% higher than the corresponding value of WT,respectively. The reason for the further increase in PS production was the catalytic volume of the mutant SkPLDY405A/Q407G/D370P/K478P expanded to 718.6 Å3,the catalytic distance(d1)between the N atom of His462 and the O atom of L-serine was shortened by 0.6 Å,while the distance(d2)between the O atom of H2O increased by 0.8 Å,which made it easy to react with L-serine. Furthermore,the PS titer and conversions rate of PS increased to 50.4 g·L-1 and 66.3% on 3 L scale fermentation,and the space-time yield was 12.6 g/L/h. Protein engineering was used to obtain mutants with increased transphosphatidyl activity in this study,which laid a solid foundation for improving the industrial production of phospholipase D.

     

/

返回文章
返回