• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
何鸿举, 王洋洋, 王魏, 蒋圣启, 朱亚东, 马汉军, 陈复生, 王玉玲, 朱明明, 赵圣明, 潘润淑. 基于高光谱信息的生鲜鸡肉离心损失率快速预测模型构建[J]. 华体会体育, 2020, 41(9): 238-243. DOI: 10.13386/j.issn1002-0306.2020.09.038
引用本文: 何鸿举, 王洋洋, 王魏, 蒋圣启, 朱亚东, 马汉军, 陈复生, 王玉玲, 朱明明, 赵圣明, 潘润淑. 基于高光谱信息的生鲜鸡肉离心损失率快速预测模型构建[J]. 华体会体育, 2020, 41(9): 238-243. DOI: 10.13386/j.issn1002-0306.2020.09.038
HE Hong-ju, WANG Yang-yang, WANG Wei, JIANG Sheng-qi, ZHU Ya-dong, MA Han-jun, CHEN Fu-sheng, WANG Yu-ling, ZHU Ming-ming, ZHAO Sheng-ming, PAN Run-shu. Model Establishment for Fast Predicting Centrifugal Loss Rate of Fresh Chicken Based on Hyperspectral Information[J]. Science and Technology of Food Industry, 2020, 41(9): 238-243. DOI: 10.13386/j.issn1002-0306.2020.09.038
Citation: HE Hong-ju, WANG Yang-yang, WANG Wei, JIANG Sheng-qi, ZHU Ya-dong, MA Han-jun, CHEN Fu-sheng, WANG Yu-ling, ZHU Ming-ming, ZHAO Sheng-ming, PAN Run-shu. Model Establishment for Fast Predicting Centrifugal Loss Rate of Fresh Chicken Based on Hyperspectral Information[J]. Science and Technology of Food Industry, 2020, 41(9): 238-243. DOI: 10.13386/j.issn1002-0306.2020.09.038

基于高光谱信息的生鲜鸡肉离心损失率快速预测模型构建

Model Establishment for Fast Predicting Centrifugal Loss Rate of Fresh Chicken Based on Hyperspectral Information

  • 摘要: 本文旨在挖掘900~1700 nm波长范围内的高光谱信息构建生鲜鸡肉离心损失率的快速预测模型。通过采集生鲜鸡肉样品的高光谱图像,并提取图像感兴趣区域的光谱信息,经基线校正(Baseline Correction,BC)、高斯滤波平滑(Gaussian Filter Smoothing,GFS)、多元散射校正(Multiplicative Scatter Correction,MSC)、移动平均值平滑(Moving Average Smoothing,MAS)、中值滤波平滑(Median Filtering Smoothing,MFS)5种光谱预处理后,建立全波段偏最小二乘(Partial Least Squares,PLS)回归模型,并利用回归系数法(Regression Coefficient,RC)、连续投影算法(Successive Projections Algorithm,SPA)和逐步回归法(Stepwise)筛选特征波长,优化全波段模型。结果显示,基于Stepwise法从原始光谱中筛选的16个最优波长(900.6、915.4、1024.0、1089.8、1111.2、1155.6、1165.5、1288.9、1305.4、1433.9、1442.1、1486.7、1493.3、1541.1、1690.1和1693.4 nm)构建的PLS模型预测效果较好,其中,rC为0.94,RMSEC(Root Mean Square Error of Calibration)为1.43%,rP为0.94,RMSEP(Root Mean Square Error of Prediction)为1.60%。本文表明,基于高光谱信息构建的PLS模型可快速预测生鲜鸡肉离心损失率。

     

    Abstract: The present study aimed to establish a rapid model for predicting centrifugal loss rate of fresh chicken by mining hyperspectral information in the wavelength range of 900~1700 nm. Hyperspectral images of chicken samples were acquired and the spectral information within the region of interest of images were extracted. Partial least squares(PLS)models were established based on the full range wavelengths pretreated by baseline correction(BC),Gaussian filter smoothing(GFS),multiplicative scatter correction(MSC),moving average smoothing(MAS)and median filtering smoothing(MFS),respectively. Through regression coefficient(RC),successive projections algorithm(SPA)and stepwise algorithms,optimal wavelengths were respectively selected to optimize the full wavelength PLS model. The results showed that the PLS model based on the 16 optimal wavelengths(900.6,915.4,1024.0,1089.8,1111.2,1155.6,1165.5,1288.9,1305.4,1433.9,1442.1,1486.7,1493.3,1541.1,1690.1 and 1693.4 nm)selected from raw spectra by stepwise method had better performance,with rC of 0.94,root mean square error of calibration(RMSEC)of 1.43%,rP of 0.94 and root mean square error of prediction(RMSEP)of 1.60%. The experiment concluded that PLS model based on hyperspectral information could be used for the rapid prediction of centrifugal loss rate in raw fresh chicken.

     

/

返回文章
返回