• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
张翀, 刘贵珊, 何建国, 程丽娟, 万国玲. 盐池滩羊肉脂肪含量的高光谱预测模型构建[J]. 华体会体育, 2019, 40(20): 237-242. DOI: 10.13386/j.issn1002-0306.2019.20.038
引用本文: 张翀, 刘贵珊, 何建国, 程丽娟, 万国玲. 盐池滩羊肉脂肪含量的高光谱预测模型构建[J]. 华体会体育, 2019, 40(20): 237-242. DOI: 10.13386/j.issn1002-0306.2019.20.038
ZHANG Chong, LIU Gui-shan, HE Jian-guo, CHENG Li-juan, WAN Guo-ling. Establishment of Hyperspectral Prediction Models for Fat Content of Tan Sheep Mutton in Yanchi Country[J]. Science and Technology of Food Industry, 2019, 40(20): 237-242. DOI: 10.13386/j.issn1002-0306.2019.20.038
Citation: ZHANG Chong, LIU Gui-shan, HE Jian-guo, CHENG Li-juan, WAN Guo-ling. Establishment of Hyperspectral Prediction Models for Fat Content of Tan Sheep Mutton in Yanchi Country[J]. Science and Technology of Food Industry, 2019, 40(20): 237-242. DOI: 10.13386/j.issn1002-0306.2019.20.038

盐池滩羊肉脂肪含量的高光谱预测模型构建

Establishment of Hyperspectral Prediction Models for Fat Content of Tan Sheep Mutton in Yanchi Country

  • 摘要: 本文利用可见-近红外高光谱成像技术预测冷鲜滩羊肉脂肪含量,优选最佳预测模型。测定90个滩羊背最长肌的脂肪含量并采集其光谱图像,对原始光谱进行不同种预处理后,构建了全波段下的偏最小二乘回归(PLSR)和主成分回归(PCR)的光谱预测模型。为减少模型运算次数,在预处理效果最优的全波段模型上采用连续投影算法(SPA)、应用竞争性自适应重加权(CARS)、变量组合集群分析(VCPA)和波长空间迭代收缩(IVISSA)方法提取特征波长,构建脂肪含量的光谱预测模型。结果表明:采用归一化(Normlize)预处理后光谱构建的PLSR全波段模型效果最好,校正集模型相关系数(Rc)达到0.921;采用多元散射校正(MSC)预处理后光谱构建的PCR全波段模型效果最好,其校正集模型相关系数(Rc)达到0.850;在4种提取特征波长过程中,IVISSA算法所提取特征波长的交互验证均方根误差(RMSECV)最低,为0.0072;Normlize-IVISSA-PLSR模型较其他3种算法所构建的PLSR模型效果最优,其校正集相关系数(Rc)和预测集相关系数(Rp)值分别为0.931和0.754,表明利用高光谱技术对盐池滩羊肉脂肪含量进行预测是可行的。研究成果为冷鲜滩羊肉品质在线光谱快速无损检测系统开发提供理论依据。

     

    Abstract: In this paper,visible-near-infrared hyperspectral imaging technology was used to predict the fat content of cold Tan sheep mutton in order to optimize the best prediction model. By measuring the fat content of 90 longissimus dorsi muscles of Tan sheep and collecting their spectral images,the spectral prediction models of partial least squares regression(PLSR)and principal component regression(PCR)in full band were constructed after different pretreatments of the original spectra.After operation to reduce the model number,the pretreatment effect on the full wave model of the optimal continuous successie projection algorithm(SPA),competitive adaptive reweighted sampling(CARS),variables combination population analysis(VCPA)and interval variable iterative space shrinkage approach(IVISSA),and wavelength space iterative shrinkage method,through these methods to extract the characteristic wavelength,fat content of spectral prediction model was constructed. The results showed that,the PLSR full-band model constructed by Normlize pretreatment had the best effect,and the related coefficient of calibration set(Rc)of the correction set model reached 0.921. PCR full-band model constructed by multivariate scattering correction(MSC)pretreatment had the best effect,and the related coefficient of calibration set(Rc)of the correction set model reached 0.850. In the process of extracting characteristic wavelengths,the interactive verification root mean square error(RMSECV)of IVISSA algorithm was the lowest,which was 0.0072. Compared with the PLSR model constructed by the other three algorithms,the Normlize-IVISSA-PLSR model had the best effect,and related coefficient of calibration set(Rc)and related coefficient of prediction set(Rp)were 0.931 and 0.754,respectively. The above research showed that it was feasible to predict the fat content of Tan sheep mutton by hyperspectral method. The results provide a theoretical basis for the development of on-line fast nondestructive testing system for cold Tan sheep mutton quality.

     

/

返回文章
返回