• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
公艳, 熊双丽, 彭凌, 李安林, 薛朝云. 响应面-主成分分析法优化马铃薯挂面工艺[J]. 华体会体育, 2017, (23): 143-150. DOI: 10.13386/j.issn1002-0306.2017.23.028
引用本文: 公艳, 熊双丽, 彭凌, 李安林, 薛朝云. 响应面-主成分分析法优化马铃薯挂面工艺[J]. 华体会体育, 2017, (23): 143-150. DOI: 10.13386/j.issn1002-0306.2017.23.028
GONG Yan, XIONG Shuang-li, PENG Ling, LI An-lin, XUE Chao-yun. Optimization of potato noodles technology by response surface methodology and principal component analysis[J]. Science and Technology of Food Industry, 2017, (23): 143-150. DOI: 10.13386/j.issn1002-0306.2017.23.028
Citation: GONG Yan, XIONG Shuang-li, PENG Ling, LI An-lin, XUE Chao-yun. Optimization of potato noodles technology by response surface methodology and principal component analysis[J]. Science and Technology of Food Industry, 2017, (23): 143-150. DOI: 10.13386/j.issn1002-0306.2017.23.028

响应面-主成分分析法优化马铃薯挂面工艺

Optimization of potato noodles technology by response surface methodology and principal component analysis

  • 摘要: 本文以小麦粉、马铃薯全粉为主要原料,豆腐柴叶为辅料,采用单因素和Box-Behnken实验设计,响应面和主成分分析法优化马铃薯挂面加工工艺。结果表明:第13主成分累计贡献率达到86.10%,足以描述马铃薯挂面质构、感官、烹调损失率和干物质吸水率综合反应的挂面品质。以主成分分析得到的规范化综合评分为响应值建立的二次多项式回归模型回归效果显著,拟合度较好(p<0.0001,R2=0.9699)。偏最小二乘法回归分析预测马铃薯挂面最佳综合评分工艺参数为:马铃薯全粉添加量31%,豆腐柴汁液添加量9%,醒发时间31 min,醒发温度25℃,理论综合评分值达到0.9194,该条件下马铃薯挂面规范化综合评分达0.9116,与模型预测值接近,表明以主成分分析得到的规范化综合评分为响应值建立的回归模型具有良好的预测能力。 

     

    Abstract: In this paper, wheat flour and potato granules were used as main raw materials, and the Premna microphylla Turcz leaves were used as auxiliary materials.The single factor and Box-Behnken experimental design, response surface analysis ( RSA) and principal component analysis ( PCA) were used to optimize the processing technology of potato noodles in this paper.The results showed that the first to third principal components cumulative percentages contribution was 86.10%, which could be sufficient to reflect the quality of noodles with comprehensive response of the texture indexes, sensory, cooking loss rate and dry matter water absorption rate. The regression coefficient of the two polynomial regression model established by principal component analysis was significant, and had better fit degree ( p < 0.0001, R2= 0.9699) . Partial least squares regression analysis predicted that the best comprehensive score for the process parameters was: potato granules of 31%, Premna microphylla Turcz Juice of 9%, fermentation time of 31 min, fermentation temperature of 25 ℃.The comprehensive score of the theory reached 0.9194.The actual measured value was 0.9116 which was consistent with the model predicted value.The results indicated that the regression model established by principal component analysis has had a good predictive ability.

     

/

返回文章
返回