• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
赵盈盈, 罗慧, 肖鹏飞, 卢伟, 崔梦洁. 基于隐马尔可夫模型的乳制品种类判别[J]. 华体会体育, 2017, (23): 64-68. DOI: 10.13386/j.issn1002-0306.2017.23.014
引用本文: 赵盈盈, 罗慧, 肖鹏飞, 卢伟, 崔梦洁. 基于隐马尔可夫模型的乳制品种类判别[J]. 华体会体育, 2017, (23): 64-68. DOI: 10.13386/j.issn1002-0306.2017.23.014
ZHAO Ying-ying, LUO Hui, XIAO Peng-fei, LU Wei, CUI Meng-jie. Classification of dairy products based on Hidden Markov Model[J]. Science and Technology of Food Industry, 2017, (23): 64-68. DOI: 10.13386/j.issn1002-0306.2017.23.014
Citation: ZHAO Ying-ying, LUO Hui, XIAO Peng-fei, LU Wei, CUI Meng-jie. Classification of dairy products based on Hidden Markov Model[J]. Science and Technology of Food Industry, 2017, (23): 64-68. DOI: 10.13386/j.issn1002-0306.2017.23.014

基于隐马尔可夫模型的乳制品种类判别

Classification of dairy products based on Hidden Markov Model

  • 摘要: 为构建基于光谱分析和隐马尔科夫模型的乳制品种类判别的新方法,首先采集4种乳制品的光谱数据样本,其次分别采用小波变换法、多点平滑法和多元散射校正法对光谱数据进行预处理,通过主成分分析法提取样本数据主特征。将处理后的数据分成两个集合,一部分数据用于训练隐马尔科夫分类模型,其余数据进行测试。实验对15种不同数据处理条件下的数据进行了测试,结果表明不同预处理和特征维度会影响分类模型的检测精度,平均检测结果达到99%以上,隐马尔科夫模型用于乳制品种类判别具有较稳定的判别准确性。 

     

    Abstract: A new method was studied for determining the classification of dairy products based on spectrum analysis and Hidden Markov Model ( HMM) .Firstly, the spectrum data were collected, which sampled from 4 kinds of dairy product.Secondly, wavelet transform method, multi-point smoothing method and multivariate scattering correction method were used to preprocess spectral data, and the main characteristics of sample data were extracted by principal component analysis ( PCA) . Then, the processed data was divided into two collections, part of which was used to train the Hidden Markov classification model ( HMM) and the residual data was tested.The experiment results under 15 processing conditions showed that different pretreatment methods and main feature dimensions of PCA could affect the detection accuracy of the classification model.The experimental average result was more than 99%. In conclusion, HMM could be used in dairy products classification and had a stable classification accuracy.

     

/

返回文章
返回