• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
郝勇, 温钦华, 罗秋红, 饶敏, 陈斌. 基于近红外光谱和LSSVM方法的转基因大米鉴别研究[J]. 华体会体育, 2017, (22): 242-245. DOI: 10.13386/j.issn1002-0306.2017.22.047
引用本文: 郝勇, 温钦华, 罗秋红, 饶敏, 陈斌. 基于近红外光谱和LSSVM方法的转基因大米鉴别研究[J]. 华体会体育, 2017, (22): 242-245. DOI: 10.13386/j.issn1002-0306.2017.22.047
HAO Yong, WEN Qin-hua, LUO Qiu-hong, RAO Min, CHEN Bin. Study on identification of genetically modified rice by using near-infrared spectroscopy combined with LSSVM[J]. Science and Technology of Food Industry, 2017, (22): 242-245. DOI: 10.13386/j.issn1002-0306.2017.22.047
Citation: HAO Yong, WEN Qin-hua, LUO Qiu-hong, RAO Min, CHEN Bin. Study on identification of genetically modified rice by using near-infrared spectroscopy combined with LSSVM[J]. Science and Technology of Food Industry, 2017, (22): 242-245. DOI: 10.13386/j.issn1002-0306.2017.22.047

基于近红外光谱和LSSVM方法的转基因大米鉴别研究

Study on identification of genetically modified rice by using near-infrared spectroscopy combined with LSSVM

  • 摘要: 采用近红外漫反射光谱结合主成分分析(principal component analysis,PCA)和最小二乘支持向量机(least squares support vector machine,LSSVM)研究转基因大米的鉴别方法。采用PCA方法分析大米样品光谱空间分布;不同的光谱预处理方法:5点平滑、多元散射校正(multiplicative scatter correction,MSC)和标准正态变量变换(standard normal variate transformation,SNV)结合LSSVM用于定性判别模型的建立和优化;采用格点搜索方法对LSSVM模型的惩罚因子(c)和径向基核函数宽度(g)进行优化;正确识别率(correct recognition rate,CRR)用于判别模型的评价。结果表明:MSC结合LSSVM可用于转基因大米定性判别模型的建立,最优模型的CRR为97.50%。该方法有望成为转基因食品快速鉴别的一种辅助方法。 

     

    Abstract: Near-infrared diffuse reflectance spectroscopy ( NIDRS) combined with principal component analysis ( PCA) and least squares support vector machine ( LSSVM) were used for the identification of transgenic rice. PCA was used to analyze the spectral spatial distribution of rice. Different spectral preprocessing methods including 5-point smoothing, multivariate scatter correction ( MSC) and standard normal variate transformation ( SNV) combined with LSSVM were used to build and optimize qualitative models.The grid search algorithm was employed to obtain the optimal solution of the penalty factor ( c) and the parameters gamma ( g) of RBF kernel. The correct recognition rate ( CRR) were used to evaluate models. The results showed that MSC combined with LSSVM could be used to establish the qualitative identification model of transgenic rice. The CRR of the optimal model was 97.50%.The method was expected to be an auxiliary method for rapid detection of genetically modified foods.

     

/

返回文章
返回