• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
陈超, 郭妍, 张政, 赵风云. 矿质元素含量结合化学计量学对云南3种单花种蜂蜜的花源鉴别研究[J]. 华体会体育, 2017, (04): 90-93. DOI: 10.13386/j.issn1002-0306.2017.04.009
引用本文: 陈超, 郭妍, 张政, 赵风云. 矿质元素含量结合化学计量学对云南3种单花种蜂蜜的花源鉴别研究[J]. 华体会体育, 2017, (04): 90-93. DOI: 10.13386/j.issn1002-0306.2017.04.009
CHEN Chao, GUO Yan, ZHANG Zheng, ZHAO Feng-yun. Floral origin determination of three kinds of monofloral honey from Yunnan via chemometric analysis of mineral elements[J]. Science and Technology of Food Industry, 2017, (04): 90-93. DOI: 10.13386/j.issn1002-0306.2017.04.009
Citation: CHEN Chao, GUO Yan, ZHANG Zheng, ZHAO Feng-yun. Floral origin determination of three kinds of monofloral honey from Yunnan via chemometric analysis of mineral elements[J]. Science and Technology of Food Industry, 2017, (04): 90-93. DOI: 10.13386/j.issn1002-0306.2017.04.009

矿质元素含量结合化学计量学对云南3种单花种蜂蜜的花源鉴别研究

Floral origin determination of three kinds of monofloral honey from Yunnan via chemometric analysis of mineral elements

  • 摘要: 为了鉴别云南地区3种单花种蜂蜜的花源,利用火焰原子吸收光谱法(F-AAS)和石墨炉原子吸收光谱法(GF-AAS)测定了云南地区3种特色春蜂蜜(苕子蜂蜜、橡胶蜂蜜和石榴蜂蜜)中K、Na、Zn、Mn、Mg、As、Fe、Cr、Ni、Ca、Cu、Pb和Cd的含量。比较发现,3种蜂蜜间的矿质元素含量差异较明显。以矿质元素含量为变量,应用PCA、PLS-DA和BP-ANN,对3种蜂蜜进行分析。PCA将13个变量降为三个主成分,三个主要组件解释了66.39%的总方差,并初步实现了不同蜂蜜的分类。在上述结果的基础上,从每种蜂蜜中随机选取30个样品,分别构建PLS-DA和BP-ANN蜂蜜鉴别模型。PLS-DA模型的训练和交叉验证分类的总正确率分别为96.7%和92.2%;BP-ANN模型的训练和交叉验证分类的总正确率分别为100%和95.6%。与PLS-DA相比,BP-ANN模型的性能较好。应用训练后的BP-ANN模型,对余下的35个蜂蜜样品进行测试,橡胶蜂蜜和石榴蜂蜜的预测精度达到100%,而苕子蜂蜜因一个样品被错误的划分到石榴蜂蜜,预测精度为90%。利用F-AAS、GF-AAS测定矿质元素含量结合化学计量学可以实现云南地区3种单花种蜂蜜的花源鉴别。 

     

    Abstract: In order to discriminate the floral origins of honey,the concentrations of 13 mineral elements( K,Na,Zn,Mn,Mg,As,Fe,Cr,Ni,Ca,Cu,Pb,and Cd) of three honeys( Vicia cracca honey,Hevea brasiliensis honey and Punica granatum honey)from Yunnan( China) were determined by flame atomic absorption spectrometry( F- AAS) or graphite furnace atomic absorption spectrometry( GF- AAS),which showed great differences among the honeys. Based on the specific mineral content,principal component analysis( PCA),partial least- squares discriminant analysis( PLS- DA) and back- propagation artificial neural network( BP- ANN) were used in classification of the three honeys. With PCA,three honey species were preliminary classified by three principal components,which were established from thirteen mineral contents. Subsequently,PLS- DA and BP- ANN classification model were constructed with 30 randomly selected samples from the three honey species. In PLS- DA,the total correct classification rates for model training and cross- validation were 96.7% and 92.2%,respectively.In BP- ANN,the total correct classification rates for model training and cross- validation were 100% and 95.6%,respectively,indicating a better performance of BP- ANN than PLS- DA. The validation of BP- ANN model was further tested by the rest 35 honey samples.H.brasiliensis honey and P.granatum honey samples were predicted with 100% accuracy.V.cracca honey samples was predicted with 90% accuracy.These result suggested that the value of mineral content tested by F- AAS or GF- AAS with chemometric methods could be used as a potential and powerful tool for the classification of honeys from different botanical origins.

     

/

返回文章
返回