• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
梁晓燕, 郭中华, 线文瑶, 魏菁. 基于高光谱和极限学习机的冷鲜羊肉颜色无损检测[J]. 华体会体育, 2016, (24): 69-73. DOI: 10.13386/j.issn1002-0306.2016.24.005
引用本文: 梁晓燕, 郭中华, 线文瑶, 魏菁. 基于高光谱和极限学习机的冷鲜羊肉颜色无损检测[J]. 华体会体育, 2016, (24): 69-73. DOI: 10.13386/j.issn1002-0306.2016.24.005
LIANG Xiao-yan, GUO Zhong-hua, XIAN Wen-yao, WEI Jing. Non-destructive detection of color in chilled mutton based on hyperspectral technique and extreme learning machine[J]. Science and Technology of Food Industry, 2016, (24): 69-73. DOI: 10.13386/j.issn1002-0306.2016.24.005
Citation: LIANG Xiao-yan, GUO Zhong-hua, XIAN Wen-yao, WEI Jing. Non-destructive detection of color in chilled mutton based on hyperspectral technique and extreme learning machine[J]. Science and Technology of Food Industry, 2016, (24): 69-73. DOI: 10.13386/j.issn1002-0306.2016.24.005

基于高光谱和极限学习机的冷鲜羊肉颜色无损检测

Non-destructive detection of color in chilled mutton based on hyperspectral technique and extreme learning machine

  • 摘要: 利用4001000 nm近红外高光谱成像系统对冷鲜羊肉颜色进行快速无损检测研究。采集140个冷鲜羊肉样品(贮藏17 d)光谱图像,并测量其亮度(L*)、红度(a*)、黄度(b*)和饱和度(C*)等颜色参数。选取感兴趣区域获取样品代表性光谱,利用联合区间偏最小二乘法(si PLS)对一阶微分、多元散射校正、标准正态变量变换(SNV)等方法预处理后的光谱数据筛选特征波段,建立冷鲜羊肉颜色各参数的si PLS-ELM神经网络校正模型。对于L*、a*、b*和C*,模型的预测集相关系数(RP)分别为0.9219、0.9391、0.9603和0.8839,预测集均方根误差(RMSEP)分别为1.1935、0.2333、0.6009和0.3586。结果表明:采用可见-近红外高光谱成像技术结合si PLS-ELM神经网络对冷鲜羊肉颜色的快速无损检测是可行的。 

     

    Abstract: Near- infrared hyperspectral imaging system that was ranging from 400 nm to 1000 nm was used to finish the research of non- destructive and rapid testing of the chilled mutton colors. Hyperspectral images were taken from the 140 chilled mutton samples( storaging 1 ~7 d),and it measured the colors parameters: brightness( L*),redness( a*),yellowness( b*) and saturation( C*). Then it selected an interested area to get a representative sample spectra,and utilized the spectral data which was gotten from the preprocess synergy interval partial least squares regression( si PLS),the first derivative( FD),multiplicative scatter correction( MSC) and SNV and it was used to select the characteristic bands.It established si PLS- ELM neural network calibration model that was based on the colors parameters of the chilled mutton.The correlation coefficient( RP) of the model prediction was 0.9219,0.9391,0.9603,0.8839 which was corresponded to the L*,a*,b*and C*. The root mean square error prediction( RMSEP) was 1.1935,0.2333,0.6009,0.3586. The results showed that: the near- infrared hyperspectral imaging technologies combing with si PLS- ELM neural network was feasible for the non- destructive and rapid testing of the the chilled mutton colors.

     

/

返回文章
返回