• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
丁佳兴, 吴龙国, 何建国, 刘贵珊, 强锋. 高光谱成像技术对灵武长枣果皮强度的无损检测[J]. 华体会体育, 2016, (24): 58-62. DOI: 10.13386/j.issn1002-0306.2016.24.003
引用本文: 丁佳兴, 吴龙国, 何建国, 刘贵珊, 强锋. 高光谱成像技术对灵武长枣果皮强度的无损检测[J]. 华体会体育, 2016, (24): 58-62. DOI: 10.13386/j.issn1002-0306.2016.24.003
DING Jia-xing, WU Long-guo, HE Jian-guo, LIU Gui-shan, QIANG Feng. Non-destructive determination of pericarp break force of Lingwu long jujube by hyperspectral imaging technology[J]. Science and Technology of Food Industry, 2016, (24): 58-62. DOI: 10.13386/j.issn1002-0306.2016.24.003
Citation: DING Jia-xing, WU Long-guo, HE Jian-guo, LIU Gui-shan, QIANG Feng. Non-destructive determination of pericarp break force of Lingwu long jujube by hyperspectral imaging technology[J]. Science and Technology of Food Industry, 2016, (24): 58-62. DOI: 10.13386/j.issn1002-0306.2016.24.003

高光谱成像技术对灵武长枣果皮强度的无损检测

Non-destructive determination of pericarp break force of Lingwu long jujube by hyperspectral imaging technology

  • 摘要: 利用高光谱技术对灵武长枣果皮强度检测进行研究,为灵武长枣外部品质无损检测提供科学方法。采集120个灵武长枣的4001000 nm的高光谱图像,对光谱数据进行预处理;应用连续投影算法(SPA)、正自适应加权算法(CARS)和无信息变量消除法(UVE)对原始光谱数据提取特征波长;分别建立基于全光谱和特征波长的偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)果皮强度预测模型。结果表明:采用标准正态变换(SNV)预处理算法效果最优,其PLSR模型的交叉验证相关系数(Rcv)为0.8207,交叉验证均方根误差(RMSECV)为9.9630;利用SPA、CARS和UVE法从全光谱的125个波长中分别选取出29个、31个和31个特征波长;而基于全光谱建立的LS-SVM模型效果最优,其预测相关系数(Rp)为0.9555,预测均方根误差(RMSEP)为3.8282;研究结果表明基于高光谱成像技术采集的灵武长枣漫反射光谱进行果皮强度无损检测具有可行性。 

     

    Abstract: Using hyperspectral imaging technology to measure pericarp break force of Lingwu jujube could provide a scientific method for the non- destructive measurement of external quality of Lingwu jujube. The hyperspectral image of 120 Lingwu long jujubes were acquired from 400 nm to 1000 nm,and pretreatment methods were used to process diffuse reflectance spectroscopy. The successive projections algorithm( SPA),competitive adaptive reweighed sampling( CARS) and principal uninformative variable elimination( UVE) were used to select characteristic wavelengths.A partial least squares regression( PLSR) and a least squares support vector machine( LS-SVM) model were established based on full spectra and selected characteristic wavelengths for predicting pericarp break force of Lingwu long jujube.The result showed that standardized normal variate( SNV) pretreatment method was best,and the correlation coefficient of cross calibration( Rcv) of the PLSR model built was 0.8207,root mean square error of cross validation( RMSEP) reached 9.9630. The SPA,CARS and UVE method were used to select characteristic wavelengths with 29,31 and 31 from 125 wavelengths,respectively.LS- SVM model based on full spectra was the best,and correlation coefficient of prediction( Rp) and root- mean- square error of prediction( RMSEP) of the model was 0.9555 and 3.8282,respectively. The results indicated that the non- destructive measurement for pericarp break force of Lingwu jujube based on hyperspectral imaging technology was feasible.

     

/

返回文章
返回