• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
赵伟彦, 黄敏, 朱启兵. 基于多模型融合的干燥过程中毛豆含水率、颜色高光谱图像无损检测[J]. 华体会体育, 2015, (05): 267-271. DOI: 10.13386/j.issn1002-0306.2015.05.048
引用本文: 赵伟彦, 黄敏, 朱启兵. 基于多模型融合的干燥过程中毛豆含水率、颜色高光谱图像无损检测[J]. 华体会体育, 2015, (05): 267-271. DOI: 10.13386/j.issn1002-0306.2015.05.048
ZHAO Wei-yan, HUANG Min, ZHU Qi-bing. Prediction of moisture content and color for vegetable soybean during drying process based on multiple model fusion[J]. Science and Technology of Food Industry, 2015, (05): 267-271. DOI: 10.13386/j.issn1002-0306.2015.05.048
Citation: ZHAO Wei-yan, HUANG Min, ZHU Qi-bing. Prediction of moisture content and color for vegetable soybean during drying process based on multiple model fusion[J]. Science and Technology of Food Industry, 2015, (05): 267-271. DOI: 10.13386/j.issn1002-0306.2015.05.048

基于多模型融合的干燥过程中毛豆含水率、颜色高光谱图像无损检测

Prediction of moisture content and color for vegetable soybean during drying process based on multiple model fusion

  • 摘要: 毛豆的颜色和含水率是反映毛豆品质的两个重要参数,本文报道了一种利用多模型融合方法提高干燥过程中毛豆颜色和含水率高光谱图像无损检测精度的方法。该方法利用平均值,熵,相对散度,标准差等特征实现对高光谱图像的特征提取;并分别利用这四类特征建立毛豆颜色、含水率的偏最小二乘预测子模型;最终通过对各预测子模型的加权融合获得最终的预测结果,达到提高干燥过程中毛豆颜色和含水率无损检测精度的目的。相比于单特征模型,多模型融合后的颜色预测均方根误差RMSEP降低了4.3%;含水率的预测均方根误差RMSEP降低了7.7%。T统计检验表明:融合模型性能显著地优于单一特征模型。 

     

    Abstract: Color and moisture content of vegetable soybean are two important parameters in determining quality of vegetable soybean. In this paper,a multiple model fusion method were proposed to improve the prediction accuracies for color and moisture content of soybean during the drying process.Four feature extraction methods,namely,mean value,entropy value,relative divergence and standard deviation features,were used for extracting features from hyperspectral image,and then four partial least squares regression( PLSR) sub- models for color and moisture content prediction were developed using each feature alone,the multiple models fusion method,which was weighted average over the prediction results from the four sub- models,finally was obtained to improve the prediction accuracies. Compared to PLSR sub- models,the multiple model fusion method achieved consistently better results,with improvements of 4.3% and 7.7% for color and moisture content prediction,respectively. The paired t- test for root- mean- square error of prediction at 5% level of significance showed that the multiple model fusion method was superior over the PLSR sub- models. Hence,this multiple model fusion method provided a simple and robust means for improving color and moisture content prediction of soybean during drying process.

     

/

返回文章
返回