• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
谭凯燕, 梁晓琳, 缪璐, 黎德勇, 李全阳. 多元素分析判别奶粉产地来源研究[J]. 华体会体育, 2015, (02): 52-56. DOI: 10.13386/j.issn1002-0306.2015.02.002
引用本文: 谭凯燕, 梁晓琳, 缪璐, 黎德勇, 李全阳. 多元素分析判别奶粉产地来源研究[J]. 华体会体育, 2015, (02): 52-56. DOI: 10.13386/j.issn1002-0306.2015.02.002
TAN Kai-yan, LIANG Xiao-lin, MIAO Lu, LI De-yong, LI Quan-yang. Determination of milk powder geographical origin based on multi-element analysis[J]. Science and Technology of Food Industry, 2015, (02): 52-56. DOI: 10.13386/j.issn1002-0306.2015.02.002
Citation: TAN Kai-yan, LIANG Xiao-lin, MIAO Lu, LI De-yong, LI Quan-yang. Determination of milk powder geographical origin based on multi-element analysis[J]. Science and Technology of Food Industry, 2015, (02): 52-56. DOI: 10.13386/j.issn1002-0306.2015.02.002

多元素分析判别奶粉产地来源研究

Determination of milk powder geographical origin based on multi-element analysis

  • 摘要: 为了探索奶粉产地溯源的可靠方法,以3个不同产区的12种奶粉为研究对象,分别用电感耦合等离子体发射光谱法(ICP)测定了样品中的Ca、K、Mg、Na、Al、Fe、Sr共7种元素的含量,用电感耦合等离子体质谱法(ICP-MS)测定了样品中的Li、Cr、Mn、Co、Ni、Cu、Zn、Se、Ba、Pb、Sc、Y、La、Ce、Nd共15种元素的含量,用分光光度法测定了P元素的含量,采用SPSS统计分析对上述23种元素的含量分别进行了方差分析、主成分分析和聚类分析。结果表明:不同地区的奶粉样品中元素含量有其各自的特征。主成分分析和聚类分析使奶粉样品分成不同的类别,其类别与品种及来源地基本一致,聚类的整体正确率为91.67%。 

     

    Abstract: In order to explore the reliable method of milk powder origin traceability, 12 kinds of milk powder came from 3 regions were regarded as object of study. The contents of 7 chemical elements of Ca, K, Mg, Na, Al, Fe, Sr were detected by ICP-AES. The contents of 15 chemical elements of Li, Cr, Mn, Co, Ni, Cu, Zn, Se, Ba, Pb, Sc, Y, La, Ce, Nd were detected by ICP-MS. The content of P was detected by spectrophotometric method. Then SPSS was used to analyze the data by analysis of variance (ANOVA) , principal component analysis (PCA) and cluster analysis (CA) . Results showed that the element contents were different in the milk powder samples from different locals. PCA and CA classified the samples of milk powder into different categories, which was consistent to the variety and the geographical origin. The overall accuracy of CA achieved 91.67%.

     

/

返回文章
返回