• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
周围, 雷春妮, 张雅珩. MassworksTM与气相色谱-质谱联用分析当归挥发油成分[J]. 华体会体育, 2014, (22): 69-72. DOI: 10.13386/j.issn1002-0306.2014.22.006
引用本文: 周围, 雷春妮, 张雅珩. MassworksTM与气相色谱-质谱联用分析当归挥发油成分[J]. 华体会体育, 2014, (22): 69-72. DOI: 10.13386/j.issn1002-0306.2014.22.006
ZHOU Wei, LEI Chun-ni, ZHANG Ya-heng. Analysis of essential oils from angelica sinensis by MassworksTM and gas chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2014, (22): 69-72. DOI: 10.13386/j.issn1002-0306.2014.22.006
Citation: ZHOU Wei, LEI Chun-ni, ZHANG Ya-heng. Analysis of essential oils from angelica sinensis by MassworksTM and gas chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2014, (22): 69-72. DOI: 10.13386/j.issn1002-0306.2014.22.006

MassworksTM与气相色谱-质谱联用分析当归挥发油成分

Analysis of essential oils from angelica sinensis by MassworksTM and gas chromatography-mass spectrometry

  • 摘要: 首次采用气相色谱-四极杆质谱联用技术(GC-Q MS)和气相色谱-离子阱质谱联用技术(GC-IT MS)对甘肃岷县当归油的挥发性成分进行了定性分析。综合运用Massworks TM质谱解析软件、气相色谱-离子阱质谱二级质谱数据分析以及谱库检索等解析手段鉴定出当归油中30种挥发性成分,主要为Z-蒿苯内酯、E-蒿苯内酯、β-罗勒烯、α-蒎烯、3-正丁烯基苯酞、γ-榄香烯等。结果表明,几种定性手段得到的结果相互验证,能够显著提高未知成分鉴别的准确性和可靠性。 

     

    Abstract: The volatile components in angelica sinensis oil from Minxian were analyzed for the first time by gas chromatography- quadrupole mass spectrometry ( GC- Q MS) and gas chromatography- ion trap mass spectrometry (GC-IT MS) . Total of thirty compounds were identified by MassworksTMsoftware analysis, MS/MS qualitative analysis approach of GC-IT MS and library search. The major volatile components of essential oil from angelica sinensis were Z- ligustilide, E- ligustilide, β- Ocimene, α- Pinene, 3- Butylidene phthalide andγ-Elemene. Results showed that the results obtained by three kinds of qualitative methods which were MassworksTMsoftware analysis, MS/MS qualitative analysis approach of GC-IT MS and library search mutual authentication could improve the accuracy and reliability of identification of unknown composition.

     

/

返回文章
返回