• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
张尊凯, 侯敏, 权宇彤, 曹家铭, 董媛, 刘艳. ANN-GA法优化石吊兰素提取工艺[J]. 华体会体育, 2013, (14): 283-286. DOI: 10.13386/j.issn1002-0306.2013.14.013
引用本文: 张尊凯, 侯敏, 权宇彤, 曹家铭, 董媛, 刘艳. ANN-GA法优化石吊兰素提取工艺[J]. 华体会体育, 2013, (14): 283-286. DOI: 10.13386/j.issn1002-0306.2013.14.013
Optimization of the nevadensin extraction conditions from Fewflower Lysionotus using ANN-GA[J]. Science and Technology of Food Industry, 2013, (14): 283-286. DOI: 10.13386/j.issn1002-0306.2013.14.013
Citation: Optimization of the nevadensin extraction conditions from Fewflower Lysionotus using ANN-GA[J]. Science and Technology of Food Industry, 2013, (14): 283-286. DOI: 10.13386/j.issn1002-0306.2013.14.013

ANN-GA法优化石吊兰素提取工艺

Optimization of the nevadensin extraction conditions from Fewflower Lysionotus using ANN-GA

  • 摘要: 为了研究人工神经网络技术(ANN)、遗传算法(GA)相结合的化学计量方法在石吊兰素回流提取过程中的应用,在单因素实验基础上,采用Box-Behnken实验设计和ANN-GA法研究乙醇浓度、提取时间和提取次数、固液比对提取液中石吊兰素含量的影响。得到石吊兰中石吊兰素的最佳提取工艺为:乙醇浓度84%,提取2.8h,固液比1∶17,提取2次。按照该条件进行验证,得到提取液中石吊兰素含量为2.35mg/g,与预测值误差为1.88%。结果表明,神经网络遗传算法模型拟合度较好,这一方法在工艺优化过程中具有广泛的应用前景。 

     

    Abstract: In order to explore the extraction process of nevadensin from Fewflower Lysionotus, the single factor experiment and artificial neural network-genetic algorithm (ANN-GA) methods were applied to optimize the concentration of ethanol, extracting time, extracting times and solid-liquid ratio.The optimal extraction process of nevadensin was as follows :ethanol concentration 84%, extraction time 2.8h, solid-liquid ratio 1∶17, and extracting 2 times, respectively.Based on this combined conditions, the predicted maximum was 2.35mg/g, and the error of the predicted value of 1.88%.Results indicated that ANN-GA method had wide application prospect in the optimization process.

     

/

返回文章
返回